Investigation and design of monitoring systems in real time landslides at Xekaman 3 hydropower plant

  • Organ:
    1 Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Vietnam;
    2 Faculty of Water Resources Engineering, ThuyLoi University - Second Base, Vietnam
  • Keywords: Continuously Operating Reference Station (CORS), Real-time monitoring, Xekaman 3 hydropower plant, Landslides.
  • Received: 18th-Oct-2019
  • Accepted: 3rd-Jan-2020
  • Available online: 28th-Feb-2020
Pages: 11 - 20
View: 1523

Abstract:

This paper presents results of investigating, designing, and building a monitoring system in real-time based on GNSS CORS technology in order to monitor landslides at Xekaman 3 hydropower plant in the Lao people’s Democratic Republic. A system with 18 monitoring stations and a CORS station has been designed to ensure the operation of system 24/7. The connection diagram for data transmission from the monitoring stations to the data processing center, as well as the connection diagram of the devices at a monitoring station has been designed. A simulation experiment has shown that the designed system can be applied for real-time monitoring of landslide.

How to Cite
Pham, K.Cong and Nguyen, H.Van 2020. Investigation and design of monitoring systems in real time landslides at Xekaman 3 hydropower plant (in Vietnamese). Journal of Mining and Earth Sciences. 61, 1 (Feb, 2020), 11-20. DOI:https://doi.org/10.46326/JMES.2020.61(1).02.
References

[1]. Bộ Tài nguyên và Môi trường, (2007). Quyết định 05/2007/QĐ - BTNMT về sử dụng hệ thống tham số tính chuyển giữa hệ tọa độ quốc tế WGS - 84 và hệ tọa độ quốc gia VN - 2000.

[2]. Georgieva, K., Smarsly, K.,König M., and Law, K. H., (2015). An Autonomous Landslide Monitoring System Based on Wireless Sensor Networks. https://www.researchgate.net/publication/268438328.

[3]. Irwan Gumilar, Alif Fattah, Hasanuddin Z. Abidin, Vera Sadarviana, Nabila S. E. Putri, and Kristianto (2017). Landslide monitoring using terrestrial laser scanner and robotic total station in Rancabali. West Java (Indonesia).

[4]. Kuang, K. S. C., Qinghao Cao, (2015). A Low - Cost, Wireless Chemiluminescence - Based Deformation Sensor for Soil Movement and Landslide Monitoring.

[5]. National Marine Electronics Association: http://www.nmea.org

[6]. Networked Transport of RTCM via Internet Protocol (Ntrip) , Version 1.0. In: GDC (GNSS Data Center) [online]. Bundesamt für Kartographie und Geodäsie (BKG), 2004. [cit.26.05.2016]. Available from: http://igs.bkg.bund.de/root_ftp/NTRIP/documentation/NtripDocumentation.pdf/

[7]. Phạm Công Khải, (2019). Nghiên cứu phương pháp quan trắc liên tục sự dịch chuyển và biến dạng công trình trên địa bàn thành phố Hà Nội. Báo cáo tổng hợp kết quả nghiên cứu đề tài cấp thành phố. Mã số 01C-04/08-2016-3. Sở Khoa học và Công nghệ Hà Nội.

[8]. Phạm Hoàng Lân, Đặng Nam Chinh, Dương Vân Phong, Vũ Văn Trí, (2017). Trắc địa cao cấp đại cương. Nhà xuất bản Giao thông vận tải. Hà Nội.

[9]. Ruya Xiao, Xiufeng He, (2013). Real - time landslide monitoring of Pubugou hydropower resettlement zone using continuous GPS. ttps://www.researchgate.net/publication/257633559.

[10]. Savvaidis, 2016. Existing Landslide Monitoring Systems and Techniques. Journal of Measurement. 242 - 258.

[11]. Serena Artese, Michele Perrelli, (2018). Monitoring a Landslide with High Accuracy by Total Station: A DTM - Based Model to Correct for the Atmospheric Effects. www.mdpi.com/journal/geosciences.

[12]. Tommaso Carlàa, Veronica Tofania, Luca Lombardia, Federico Raspinia, Silvia Bianchinia, Davide Bertolob, Patrick Thuegazb, Nicola Casagli (2019). Combination of GNSS, satellite InSAR, and GBInSAR remote sensingmonitoring to improve the understanding of a large landslide in highalpine environment. Geomorphology. 62 - 75.

[13]. Vu Van Khoa, Shigeru Takayama, (2018). Wireless sensor network in landslide monitoring system with remote data management. Journal of Measurement. 214 - 229.