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 A linear stability analysis of uniform parallel flow superposed to a 

quasi-steady horizontal layer of solute is presented. It is shown that the 

plume is convectively unstable for the parameters considered here, and 

confirms the stabilizing effect of the longitudinal dispersivity or the 

destabilizing effect of the solute concentration, in agreement with 

previous experimental or numerical analyses. 
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1. Linear stability analysis 

In order to enhance our understanding of 

solute sedimentation in an underground flow of 

pure water (Dane et al., 1994; Oltéan et al., 2004; 

Schincariol et al., 1990, 1994; Truong et al., 2010; 

Min, 2015), a simplified uniform horizontal flow 

is considered with velocity xV e , as shown in 

Figure 1 which transports a horizontal layer of 

solute with initial thickness . This elementary 

unsteady solution of the motion equations, 

denoted by 0V , 0ˆ ( , )P x y  and 0 ( , t)mC y , satisfies in 

the following equations 
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and takes the following classical form 
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Figure 1. Sketch of the simplified flow in porous 

medium used for the linear stability analysis.  

The density of the injected solute is
sr ,  

and 
0r  is the density of pure water 

This solution is independent on the 

longitudinal dispersivity of the medium, since 

density gradients are perpendicular to the 

uniform flow. Also, a vertical pressure gradient 

base flow depends on the following control 

parameters: the zonal velocity
xV e , the injected 
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flow rate Qinj (linked to the thickness  of the 

layer by Qinj = V∞b), and the injected 

concentration Cinj. Our goal is to check the 

effect of these parameters on the stability of the 

plume by means of a linear stability analysis. 

2. Linearized equations and normal modes 

The base flow described above is unsteady, 

since the solute diffuses into fresh water. 

Nevertheless, assume that this process is 

sufficiently slow and then investigation is 

proposed for the evolution of the plume over 

time scales that are much shorter than the 

diffusive time scale mDt /2 . Since t is of the 

order of few convective time scales, this 

assumption requires that the Péclet number is 

large enough. Under this quasi-static 

approximation, the concentration field in 

Equation (4) is approximated by a steady 

solution. By replacing the diffusive scale 

mD t  by a constant thickness d l0 = and 

injecting the perturbed fields 
0 1V(x,y,t) V V (x, y,t ),   (5) 

1

0
ˆ ˆ ˆP(x,y,t) P ( x, y) P (x, y,t ),   (6) 

0 1

m m mC (x,y,t ) C (y) C (x,y,t ),   (7) 

into the complete motion equations, and 

neglecting quadratic terms result in 
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where the comma indicates a partial derivative 

with respect to state variables and the associated 

boundary conditions correspond to the absence 

of perturbation at infinity as 
1
m 1

1

C ( x,y ) u ( x,y )

v ( x,y ) 0

    

   
, (11) 

Examining for solutions in the form of 

normal modes (Betchov and Criminale, 1967), 

one can re-write as 
*i( kx- t ) * -i( k x- t )

1u ( x,y,t ) q(y)e q (y)e ,    (12) 

*i( kx- t ) * -i( k x- t )
1v ( x,y,t ) p(y)e p (y)e ,    (13) 

*1 i( kx- t ) * -i( k x- t )
mC ( x,y,t ) f (y)e f (y)e ,    (14) 

with ( ) ( ) ( ) 0f q p      , (15) 

In these equations, the symbol “*” indicates 

a complex conjugate, r ik k i k   is the 

complex wavenumber, and ω (real) is the 
pulsation of the perturbation. Also, the 
wavenumber of the Darcy equation is 

considered to be valid if / rb 2 k  and

/ ib 2 k . By substituting this modal 

decomposition into the linearized Equations (8), 
(9), (10), a non-dimensional form is achieved 

by using b for lengths and /b V
 for times, as 

shown in equation (16).  
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 (16) 

where the pressure has been eliminated by 

taking the curl of the Darcy equation. The non-

dimensional numbers appearing in these 

equations are the Péclet number (Pe) and the 

non-dimensional sedimentation velocity (Vg): 

e
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Note that the non-dimensional thickness of 

the unperturbed layer is denoted /= bl l  for 
the remaining of the paper. As noted above, this 
parameter is used to determine the flow rate of 
solute injected in the cell. 

Equations (16) are solved by using finite 
differences on a vertical grid of the form

1 .. NL y y L     , where L is a large 

vertical scale. a quadratic eigenvalue problem is 
obtained for the vector consisting of the 
unknowns at the grid points 
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of the form as 
2

1 2M X k M X k N X   

where the matrices M1, M2 and N contain 

the coefficients appearing in (16). This quadratic 

problem can be reduced to a generalized 

eigenvalue problem of the form AZ kBZ  by 

the work (Suslov, 2006). Therefore, the four 

parameters , , ,g eV P    appearing in 

Equation (16) are fixed and solving the 

eigenvalue problem obtains both the eigenvalues 

k and the corresponding eigenvectors X . The 

4N eigenvalues and eigenvectors are given by 

the numerical solver, the “physical ones” is 

chosen to satisfy two arbitrary criteria: (i) the 

growth rate
ik  should not be too large, (ii) the 

wavelength 2 / rk  must be larger than 1, the 

non-dimensional gap of the cell, and is not also 

too large.  

3. Effect of the longitudinal dispersivity 

In order to check the effect of dispersivity 

on the stability of the plume, the growth rate of 

the perturbation are calculated with an 

isotropic tensor by removing the term Pe/210 

from Equation (16) and with a non-isotropic 

tensor by taking account of Taylor dispersion 

by keeping this term in Equation (16).  

The non-dimensional parameters are 

selected as Pe = 22,  =7.6 and Vg = 0.58, 

which correspond to the values V∞ = 

0.06mm/s, Qinj = 0.5mL/h, and Cinj = 0.3 g/L. 

Results are shown in Figure 2. 

From the analysis of results in Figure 2a, 

one can conclude that the dispersion relation is 

affected by the longitudinal dispersion. The 

longitudinal dispersivity has a stabilizing 

effect. Both the growth rate of the instability 

and the range of unstable pulsations are 

reduced when αL  0. In addition, Figure 2b 

shows that the phase velocity c = ω/kr is 

almost constant and equal to 1. This suggests 

that the waves are non-dispersive and move at 

the velocity of the zonal flow in the absence of 

Taylor dispersion. In contrast, when αL  0, the 

phase velocity is no longer constant and the 

group velocity dω/dkr is different from c and 

waves are dispersive. The pulsation of the 

most unstable mode is   1 in the isotropic 

case and   0.5 in the non-isotropic case. The 

wavenumber of this mode can be read in 

Figure 2b with kr  1 in the isotropic case and 

kr  0.5 in the non-isotropic case. The 

wavelength of the most unstable mode is 

therefore larger when the Taylor dispersion is 

taken into account. For the parameters 

considered here, a wavelength is achieved 

about 6 mm in the isotropic case and 12mm in 

the non-isotropic case. The latter value is in 

agreement with our experimental results (Trieu 

et al., 2010), whereas the former value is much 

too short. 

(a): 
L 0a ¹ ; (b): 

L 0a =  

 
Figure 2. Growth rate - ki and wavenumber kr versus the pulsation ,  

for an isotropic dispersion tensor ( L 0  ) and for a non-isotropic tensor ( 0L  ) 

The non-dimensional parameters are Pe = 22,  =7.6 and Vg = 0.58 
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4. Effect of the injected concentration 

In this section, the parameters Pe = 22 (that 

is V∞ = 0.06mm/s) and 7,6  (that is Qinj = 

0.5mL/h) are fixed and five values for Vg 

between 0.14 and 1.44 (that is Cinj between 

0.05g/L and 0.5g/L) are chosen for calculation. 

Results are shown in Figure 4. Observe that the 

concentration has a destabilizing effect as the 

growth rate −ki  is increased. 

Figure 5a shows that the growth rate −ki
max

 

of the most unstable mode increases with Vg . 

This is in agreement with the experimental and 

numerical observations (Trieu et al., 2010). 

Moreover, for the parameters considered here, 

the growth rate −ki
max 

is always positive. This 

means that the plume is always unstable. In this 

convective instability, the perturbations will 

grow while they are convected in the direction 

of the flow. Figure 4b shows that waves are 

dispersive and the phase velocity c =  /kr 

weakly depends on Vg. The wavenumber kr
max

 

of the most unstable mode is shown in Figure 

5b. Observe that this wavenumber increases 

with Vg in agreement with our experiments 

where it was observed that the wavelength of 

the digitations decrease when the concentration 

increases.  

 
Figure 3. Effect of the anisotropy of the dispersion tensor on the shape of the most unstable mode. 

The figure shows the normalized concentration field Cm(x,y) of the most unstable mode in the non-

isotropic (a) and the isotropic (b) cases (x and y are non-dimensionalized by the gap b ≈ 0.55mm.  

The non-dimensional parameters are Pe = 22,  =7.6 and Vg = 0.58 

 
Figure 4. Growth rate −ki and wavenumber kr versus the pulsation w, for various non-dimensional 

sedimentation velocities Vg. The other non-dimensional parameters are Pe = 22,  =7.6 
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Figure 5. Growth rate −ki

max
 and wavenumber kr

max
 of the most unstable mode versus Vg.  

The other non-dimensional parameters are Pe = 22 and  =7.6 

 

 
Figure 6. Growth rate (left) and wavenumber (right) of the most unstable mode,  

when Pe=22, Vg=0.58 

5. Influence of the solute flow rate 

The effects of the flow rate Qinj on the 

stability of the plume are considered. 

Experiments show that the flow rate has little 

effect on the appearance of the digitations for 

the parameters examined here. To check 

whether this trend is visible also in the linear 

model, The chosen parameters Pe=22 and 

Vg=0.58 are fixed and four values for   

between 7.6 (Qinj = 0.5 mL/h) and 30.6 (Qinj = 2 

mL/h) are addressed. Figure 6 shows the growth 

rate and the wavenumber of the most unstable 

mode. These quantities remain almost 

unchanged, whereas the flow rate has been 

multiplied by 4. As discussed above, this 

tendency is in qualitative agreement with our 

experimental results. 

6. Influence of the zonal flow 

Experiments and simulations (Trieu et al., 

2010) suggest that the zonal flow has a 

“stabilizing effect”, as digitations are smaller 

when one increases the speed V
 of the 

horizontal uniform flow. This observation could 

be due to the fact that, as V
 increases, the 

plume is transported faster towards the exit of 

the test zone, so that digitations might not have 
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enough time to develop. In addition, the zonal 

flow might also have a direct effect on the 

growth rate
ik . In order to check this, The 

chosen parameters 7.6  , Vg=0.58 are fixed 

and the parameter Pe is varied between 14.7 and 

36.7, which corresponds to the change of 

velocity . / . /0 06 mm s V 1 2mm s  . Results 

are shown in Figures 7 and 8. Observe that the 

zonal flow has a direct and non-negligible effect 

on the growth rate, the larger the Pe, the smaller 

the growth rate. This is an indirect effect of the 

mechanical dispersivity of the medium. This 

effect is clearly visible in Figure 8 where the 

growth rate of the most unstable mode is plotted 

versus Pe. In addition, the wavelength of the 

most unstable mode increases with Pe. 

 

 
Figure 7. Growth rate (left) and wavenumber (right) when 7.6   and Vg=0.58 

 

 
Figure 8. Growth rate (left) and wavenumber (right) of the most unstable mode,  

when   7.6 and Vg=0.58 
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7. Conclusion 

 The stability analysis presented here 

concerns a parallel quasi-steady flow which can 

be considered as a rough approximation of the 

plume investigated in the experiments (Trieu et 

al., 2010). Nevertheless, if the zonal flow is 

strong enough, or if the concentration is small 

enough, the plume has a quasi-horizontal shape 

(far from the needle through which solute is 

injected), and the approximation is suitable. In 

addition, this model flow is controlled by the 

same parameters as the experimental flow, 

namely the velocity of the zonal flow, the flow 

rate and the concentration of the solute injected 

through the needle. In non-dimensional form, 

these parameters correspond to the Péclet 

number Pe, the non-dimensional thickness of 

the unperturbed plume  , and the non-

dimensional sedimentation velocity Vg. This 

linear analysis confirms that the various plume 

configurations strongly depend on Pe and Vg, 

i.e. on the zonal speed V∞ and on the injected 

concentration Cinj, in agreement with 

experiments and numerical simulations. For the 

parameters considered here, the plume is always 

convectively unstable as the growth rate of the 

most unstable mode is always strictly positive 

as soon as Cinj > 0. This linear analysis also 

shows that the Taylor dispersion significantly 

influences the appearance of digitations. In 

particular, the longitudinal dispersivity has a 

stabilizing effect. In addition, we observe that 

the phase velocity is constant when the 

dispersion tensor is isotropic, whereas waves 

are dispersive (the group velocity differs from 

the phase velocity) when this tensor is non-

isotropic. The appearance of an absolute 

instability in the non-isotropic case, which is 

linked to the appearance of zeros in the group 

velocity, is therefore a topic of interest which is 

among the perspectives of the present work.  
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