Research on the application of Breiman's algorithm integrated with the Random Forest in determining the importance of input factors to landslide formation in Son La province
- Authors: Chinh Dieu Thi Luu 1, Hang Thi Ha 1, *, Quynh Duy Bui 1, Hieu Cong Duong 1, Nhieu Ngoc Tran 2, Luat Tien Van 3, Hanh Hong Tran 3, Nghia Viet Nguyen 3
Affiliations:
1 Hanoi University of Civil Engineering, Hanoi, Vietnam
2 Quang Nam political shool, Quang Nam, Vietnam
3 Hanoi University of Mining and Geology, Hanoi, Vietnam
- *Corresponding:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Keywords: Breiman, Input factors, Landslide, Random Forest, Son La province.
- Received: 10th-Oct-2023
- Revised: 8th-Jan-2024
- Accepted: 15th-Jan-2024
- Online: 1st-Feb-2024
- Section: Geology - Mineral
Abstract:
Landslide susceptibility maps are effective and intuitive tools in natural disaster management, helping to minimize damage caused by natural disasters due to the specific spatial information they provide. However, the performance of these susceptibility maps depends mainly on the number and importance of input factors. Determining the importance and order of influencing factors often receives little attention in landslide prediction studies. Breiman's algorithm, integrated into the Random Forest method, can comprehensively determine the importance and order of input variables by considering the correlation relationship between the landslide inventory map and these input variables. Consequently, this study utilized Breiman's algorithm within the Random Forest technique to assess the importance of 16 input factors influencing the formation of landslide events in Son La province. The results obtained from this study serve as the foundation for selecting appropriate input factors to enhance the construction and accuracy of landslide susceptibility maps within the study area, especially in the context of climate change.
Breiman, L. (2001). Random Forests [journal article]. Machine learning, 45(1), 5-32. https://doi.org/https://doi.org/10.1023/a:1010933404324
Bui, Q. D., Ha, H., Khuc, D. T., Nguyen, D. Q., von Meding, J., Nguyen, L. P., and Luu, C. (2023). Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam. Natural Hazards, 116(2), 2283-2309. https://doi.org/10.1007/s11069-022-05764-3
Bui, T. D., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., and Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32-44. https://doi.org/https://doi.org/10.1016/ j.agrformet.2016.11.002.
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815-2831. https:// doi.org/10.5194/nhess-13-2815-2013
Cheng, Y. S., Yu, T. T., and Son, N. T. (2021). Random forests for landslide prediction in tsengwen river watershed, central taiwan. Remote Sensing, 13(2), 199. https://doi.org/10.3390/ rs13020199
Dang, V. H., Hoang, N. D., Nguyen, L. M. D., Bui, D. T., and Samui, P. (2020). A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests, 11(1), 118. https://doi. org/10.3390/f11010118
Dung, N. V., Hieu, N., Phong, T. V., Amiri, M., Costache, R., Al-Ansari, N., Prakash, I., Le, H. V., Nguyen, H. B. T., and Pham, B. T. (2021). Exploring novel hybrid soft computing models for landslide susceptibility mapping in Son La hydropower reservoir basin. Geomatics, Natural Hazards and Risk, 12(1), 1688-1714. https://doi.org/10.1080/19475705.2021.1943544
Gregorutti, B., Michel, B., and Saint-Pierre, P. (2017). Correlation and variable importance in random forests. Statistics and Computing, 27, 659-678. https://doi.org/10.1007/s11222-016-9646-1
Ha, M. C., Vu, P. L., Nguyen, H. D., Hoang, T. P., Dang, D. D., Dinh, T. B. H., Şerban, G., Rus, I., and Brețcan, P. (2022). Machine learning and remote sensing application for extreme climate evaluation: example of flood susceptibility in the Hue Province, Central Vietnam Region. Water, 14(10), 1617. https://doi.org/10. 3390/w14101617
Hà, T. H., Khúc, T. Đ., Nguyễn, T. P., Đỗ, T.P.T. (2023). Nghiên cứu ứng dụng phương pháp tỷ số tần suất kết hợp GIS trong xây dựng bản đồ nguy cơ trượt lở đất huyện Pác Nặm-tỉnh Bắc Kạn. Tạp chí Khoa học Công nghệ Xây dựng (KHCNXD)-ĐHXDHN, 17(1V), 75-90. https:// doi.org/10.31814/10.31814/stce.huce(nuce)2023-17(1V)-07.
IFRC. (2021). Viet Nam, Flooding, Landslide and Whirlwinds in Son La Province (24 Aug 2021)https://reliefweb.int/report/viet-nam/ viet-nam-flooding-landslide-and-whirlwinds-son-la-province-24-aug-2021. Accessed 25 August 2022.
Intrieri, E., and Gigli, G. (2016). Landslide forecasting and factors influencing predictability. Natural Hazards and Earth System Sciences, 16(12), 2501-2510. https://doi.org/10.5194/nhess-16- 2501-2016.
Jadda, M., Shafri, H. Z., Mansor, S. B., Sharifikia, M., and Pirasteh, S. (2009). Landslide susceptibility evaluation and factor effect analysis using probabilistic-frequency ratio model. European Journal of Scientific Research, 33(4), 654-668.
Joshi, V., and Kumar, K. (2006). Extreme rainfall events and associated natural hazards in Alaknanda valley, Indian Himalayan region. Journal of Mountain Science, 3, 228-236. https://doi.org/10.1007/s11629-006-0228-0
Khuc, D. T., Ha, H. T., Bui, P. D., Truong, Q. X., Van Tran, A., Pham, H. Q., Tran, T. D., Nguyen, C. C., and Thi, H. (2023). Comparison analytical hierarchy process (AHP) and frequency ratio (FR) method in assessment of landslide susceptibility. A case study in Van Yen district, Yen Bai province. Journal of Mining and Earth Sciences. Vol, 64(2), 79-90. https://doi.org/ 10.46326/JMES.2023.64(2).08
Lam, C. N., Niculescu, S., and Bengoufa, S. (2023). Monitoring and mapping floods and floodable areas in the Mekong Delta (Vietnam) using time-series sentinel-1 images, convolutional neural Network, multi-layer perceptron, and random forest. Remote Sensing, 15(8), 2001. https://doi.org/10.3390/rs15082001
Meten, M., PrakashBhandary, N., and Yatabe, R. (2015). Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenvironmental Disasters, 2, 1-17. https://doi.org/10.1186/s40677-015 -0016-7
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3, 159-173. https://doi.org/10.1007/s10346-006-0036-1
Nguyen, N. T., Ngo, B. T., Pham, X. C., P., Nguyen, T. H., Nguyen, T. H., Hoang, N. D. and Bui, T. D. (2018). Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46, 74-85. https://doi. org/https://doi.org/10.1016/j.ecoinf.2018.05.009.
Nguyễn, Q. H., and Trần, V. Q. (2020). Ứng dụng trí tuệ nhân tạo trong dự đoán sức chống cắt của đất sau biến dạng. Tạp chí Khoa học và Công nghệ Thủy lợi, 60, 106-113.
Nhu, O. L., Thuy, N. T. T., Wilderspin, I., and Coulier, M. (2011). A preliminary analysis of flood and storm disaster data in Vietnam. Hanoi.
Okamoto, T., Sakurai, M., Tsuchiya, S., Yoshimatsu, H., Ogawa, K., and Wang, G. (2013). Secondary hazards associated with coseismic landslide. Earthquake-Induced Landslides: Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012,
Pourghasemi, H. R., and Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental earth sciences, 75, 1-17. https://doi.org/10. 1007/s12665-015-4950-1
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91. https://doi.org/https://doi.org/10.1016/j.earscirev.2018.03.001
Schuster, R. L., and Wieczorek, G. F. (2018). Landslide triggers and types. In Landslides (pp. 59-78).
Shao, X.-y., Xu, C., Ma, S.-y., Xu, X.-w., Shyu, J. B. H., and Zhou, Q. (2021). Calculation of landslide occurrence probability in Taiwan region under different ground motion conditions. Journal of Mountain Science, 18(4), 1003-1012. https://doi.org/10.1007/s11629-020-6540-2
Sun, D., Wen, H., Wang, D., and Xu, J. (2020). A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology, 362, 107201. https://doi.org/https://doi.org/10.1016/j.geomorph.2020.107201
Taalab, K., Cheng, T., and Zhang, Y. (2018). Mapping landslide susceptibility and types using Random Forest. Big Earth Data, 2(2), 159-178. https://doi.org/10.1080/20964471.2018.1472392
Tehrany, M. S., Jones, S., Shabani, F., Martínez-Álvarez, F., and Tien Bui, D. (2019). A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoretical and Applied Climatology, 137, 637-653. https://doi.org/10.1007/s00704-018-2628-9
Trigila, A., Iadanza, C., Esposito, C., and Scarascia-Mugnozza, G. (2015). Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249, 119-136. https://doi. org/https://doi.org/10.1016/j.geomorph.2015.06.001
Truong, X. Q., Tran, N. D., Dang, N. H. D., Do, T. H., Nguyen, Q. D., Yordanov, V., Brovelli, M. A., Duong, A. Q., and Khuc, T. D. (2022). WebGIS and Random Forest Model for Assessing the Impact of Landslides in Van Yen District, Yen Bai Province, Vietnam. International Conference on Geo-Spatial Technologies and Earth Resources, (pp. 445-464). Cham: Springer International Publishing.
Van Tran, A., Nguyen, B. A., Dinh, T., Nguyen, Y. H. T., and Le, N. T. (2020). Landslides detection in Bat Xat district, Lao Cai province, Vietnam using the Alos PalSAR time-series imagery by the SBAS method. Journal of Mining and Earth Sciences. Vol 61(4), 1-10. https://doi.org/ 10.46326/JMES.2020.61(4).01
Van Westen, C. (2004). Geo-information tools for landslide risk assessment: an overview of recent developments. Landslides: evaluation and stabilization, 1, 39-56.
Van Westen, C. J., Castellanos, E., and Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3-4), 112-131. https://doi.org/ 10.1016/j.enggeo.2008.03.010
Vu, V. T., Nguyen, H. D., Vu, P. L., Ha, M. C., Bui, V. D., Nguyen, T. O., Hoang, V. H., and Nguyen, T. K. H. (2023). Predicting land use effects on flood susceptibility using machine learning and remote sensing in coastal Vietnam. Water Practice and Technology. https://doi.org/ 10.2166/wpt.2023.088
Wang, H., Zhang, L., Yin, K., Luo, H., and Li, J. (2021). Landslide identification using machine learning. Geoscience Frontiers, 12(1), 351-364. https://doi.org/https://doi.org/10.1016/j. gsf.2020.02.012
Zhang, W., Wu, C., Zhong, H., Li, Y., and Wang, L. (2021). Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1), 469-477. https:// doi.org/https://doi.org/10.1016/j.gsf.2020.03.007
Zhang, Y., Wu, W., Qin, Y., Lin, Z., Zhang, G., Chen, R., Song, Y., Lang, T., Zhou, X., and Huangfu, W. (2020). Mapping landslide hazard risk using random forest algorithm in Guixi, Jiangxi, China. ISPRS International Journal of Geo-Information, 9(11), 695. https://doi.org/10. 3390/ijgi9110695 .
Other articles