Zoning debris flow risk in Than Uyen region, Lai Chau province through machine learning models

  • Affiliations:

    1 Faculty of Geography, VNU University of Science, Vietnam National University, Hanoi, Vietnam
    2 People's Committee of Muong Kim Commune, Lai Chau Province, Vietnam
    3 Vietnam Quaternary - Geomorphology Association, Vietnam Geological Association, Hanoi, Vietnam
    4 Institute of Earth Sciences, Vietnam Academy of Science and Technology, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 23rd-July-2025
  • Revised: 9th-Nov-2025
  • Accepted: 4th-Dec-2025
  • Online: 31st-Dec-2025
Pages: 54 - 69
Views: 24
Downloads: 1
Rating: , Total rating: 0
Yours rating

Abstract:

Debris flows are one of the most common and hazardous types of natural disasters in mountainous regions of Vietnam, particularly in the Than Uyen region, Lai Chau Province. This region is characterized by steep terrain, high rainfall, degraded vegetation cover, and weak soil structure, all of which contribute to the frequent triggering of debris flows. This study aims to assess debris flow susceptibility using Linear Regression and the Random Forest (RF) model, integrating remote sensing data, GIS, and field surveys. A total of ten input variables were selected to train the models using 422 sample points. The RF model demonstrated superior performance, achieving an accuracy of 86% and an AUC of 0.91, compared to 74% accuracy and an R² of 0.65 from the regression model. Given its higher reliability and practical relevance, the RF model was used to generate a debris flow susceptibility map for the entire region. Field validation conducted in Khoen On, Ta Mung, and Muong Cang communes confirmed a strong spatial agreement between high-susceptibility zones and actual debris flow events. The study recommends implementing early warning systems, continuous monitoring, and resettlement planning in high- susceptibility areas. It also emphasizes integrating the model outputs into spatial planning frameworks to enhance climate change adaptation and disaster risk reduction in mountainous areas.

How to Cite
Dang, B.Kinh, Nguyen, H.Thanh, Nguyen, H.Trong, Nguyen, H., Ngo, L.Van, Dang, B.Van, Dao, D.Minh and Nguyen, H.Minh 2025. Zoning debris flow risk in Than Uyen region, Lai Chau province through machine learning models (in Vietnamese). Journal of Mining and Earth Sciences. 1, 67 (Dec, 2025), 54-69. DOI:https://doi.org/10.46326/JMES.2026.67(1).05.
References

An, P. V. (2023). Phân tích các dạng trượt lở mái dốc các khu tái định cư thủy điện Sơn La và định hướng giải pháp xử lý.

Anh T. T., Tứ D. N. (2012). Nghiên cứu nhạy cảm và phân vùng nguy cơ trượt-lở đất khu vực hồ thủy điện Sơn La, Theo phương pháp phân tích cấp bậc Saaty. Các Khoa học về Trái đất, 34(3), 223-232.

Chu, V. N. và Nguyễn, T. T. H. (2008). Đánh giá nguy cơ tai biến trượt lở dọc tuyến đường 4D trên cơ sở nghiên cứu mối quan hệ giữa cấu trúc địa chất và địa hình. Tạp chí Địa chất, 305, 1-8.

Dang, K. B., Burkhard, B., Müller, F. và Dang, V. B. (2018). Modelling and mapping natural hazard regulating ecosystem services in Sapa, Lao Cai province, Vietnam. Paddy and Water Environment, 16(4), 767-781. https://doi.org/10.1007/s10333-018-0667-6.

Dang, K. B., Nguyen, C. Q., Tran, Q. C., Nguyen, H., Nguyen, T. T., Nguyen, D. A., Tran, T. H., Bui, P. T., Giang, T. L., Lenh, T. A., Ngo, V. L., Yasir, M., Nguyen, T. T. và Ngo, H. H. (2024). Comparison between U-shaped structural deep learning models to detect landslide traces. Science of the Total Environment, 912, 169113. https://doi.org/10.1016/j.scitotenv.2023.169113.

Doan, V. L., Nguyen, B., Nguyen, C. C. và Nguyen, C. T. (2024). Effect of time-variant rainfall on landslide susceptibility : A case study in Quang Ngai Province , Vietnam. 46, 203-221.

Geertsema, M., Highland, L. và Vaugeouis, L. (2009). Environmental impact of landslides. In K. Sassa và P. Canuti (Eds.), Landslides -- Disaster Risk Reduction (pp. 589-607). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69970-5_31.

Hung, P. V., Son, P. Q. và Dung, N. V. (2015). The study evaluated arming of risk of lanslide in Hoa Binh and Son La reservoir hydropower area on the basis of analyzing high-resolution remote sensing and geographic information systems. Vietnam Journal of Earth Sciences, 37(3), 193-203.

Jakob, M., and Hungr, O. (Eds.). (2005). Debris-flow hazards and related phenomena. Springer Praxis books. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/3-540-27129-5.

JAXA. (2008). ALOS Data Users Handbook. Earth observation research and application center Japan aerospace exploration agency, 158. http://www.eorc.jaxa.jp/ALOS/en/doc/fdata/ALOS_HB_RevC_EN.pdf.

Lary, D. J., Alavi, A. H., Gandomi, A. H. và Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3-10. https://doi.org/10.1016/j.gsf.2015.07.003.

Malet, J. P. và Maquaire, O. (2012). Risk assessment methodologies for soil threats. In Framework. https://doi.org/10.2788/ 47096.

Nguyen, C. N., Nguyen, V. D., Ha, T. G., Dinh, Q. Van, Nguyen, L. M., Huang, B.-S., Pham, T. T., Nguyen, T. H., Le, Q. K. và Nguyen, H. H. (2022). Automatic earthquake detection and phase picking and Muong Te, Lai Chau region: an application of machine learning in observational seismology in Vietnam. Vietnam Journal of Earth Science, 43(3), 430-446. https://doi.org/https://doi.org/10.15625/2615-9783/17253.

Piralilou, S. T., Shahabi, H., Jarihani, B., Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R. và Aryal, J. (2019). Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212575.

Schmitter, P., Dercon, G., Hilger, T., Thi Le Ha, T., Huu Thanh, N., Lam, N., Duc Vien, T. và Cadisch, G. (2010). Sediment induced soil spatial variation in paddy fields of Northwest Vietnam. Geoderma, 155(3-4), 298-307. https://doi.org/10.1016/j.geoderma.2009.12.014.

Takahashi, T. (2014). Debris Flow: Mechanics, Prediction and Countermeasures (2nd ed.). CRC Press, Taylor and Francis Group. ISBN: 978-1-4665-5304-7. ttps://doi.org/10.1201/b173 07.

Tehrani, F. S., Santinelli, G. và Herrera Herrera, M. (2021). Multi-Regional landslide detection using combined unsupervised and supervised machine learning. Geomatics, Natural Hazards and Risk, 12(1), 1015-1038. https://doi.org/10.1080/19475705.2021.1912196.

Tran, V. A., Khuc, T. D., Truong, X. Q., Nguyen, A. B. và Phi, T. T. (2024). Application of potential machine learning models in landslide susceptibility assessment: A case study of Van Yen district, Yen Bai province, Vietnam. Quaternary Science Advances, 14, 100181. https://doi.org/10.1016/j.qsa.2024.100181.

Varnes, D. J. (1978). Slope Movement Types and Processes. In R. L. Schuster and R. J. Krizek (Eds.), Landslides: Analysis and Control (pp. 11-33). Transportation Research Board Special Report 176. National Academy of Sciences.

Vũ, T. M. H., Đặng, T. K. P., Ngô, L. A. và Đặng, T. H. V. (2017). Nghiên cứu đánh giá tác động của các hồ chứa Lai Châu, Sơn La và Hòa Bình đến dòng chảy mùa kiệt trên sông Đà. Tạp chí khoa học kỹ thuật thủy lợi và môi trường, 57, 26-32.

Zhao, C. và Lu, Z. (2018). Remote sensing of landslides-A review. Remote Sensing, 10(2), 8-13. https://doi.org/10.3390/rs10020279.

Zhou, W., Zhou, Y., Liu, R., Yin, H. và Nie, H. (2025). Predictive modeling of river blockage severity from debris flows: Integrating statistical and machine learning approaches with insights from Sichuan Province, China. Catena, 248. https://doi.org/10.1016/j.catena.2024.108576.

Other articles