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In rock geomechanics analysis, Poisson's ratio is one of the critical factors that affect 
mechanical properties of rocks and soils, wellbore stability, in situ stress, drilling 
efficiency, and hydraulic fracturing design. There are two conventional methods for 
measuring Poisson's ratio, they are called acoustic wave method and compression 
testing of core sample. In the first, the Poisson's ratio is determined based on well-log 
data known as dynamic values. Conversion formulas need to be established for 
different geological conditions to obtain reliable computational results. However, the 
determination of each suitable conversion formula is time and money-consuming, as 
well as the process, is relatively complicated. The latter method must be performed 
in the laboratory with high accuracy equipment and requires the availability of core 
samples obtained through the coring process with high expenditure. To overcome the 
limitations of these two methods, the authors used the Artificial Intelligence 
technique to establish correlations between the value of Poisson's ratio and drilling 
parameters (e.g., weight on bit, flow rate, torque, annulus velocity, pressure losses) in 
the Oligocene formation of the Bach Ho field. Two machine learning algorithms 
including Random Forest (RF) and Decision Tree (DT) were applied in this study. On 
the other hand, the offset data from Well A and Well B penetrated through the 
Oligocene formation of the Bach Ho field were used to build, train, and verify the 
accuracy of the artificial intelligence simulations. Both wells have similarities in 
lithological characteristics and composition. The results indicated that the Artificial 
Intelligence models are highly accurate in predicting the value of Poisson's ratio, with 
correlation coefficient results for the RF model and the DT model being at 0.79 and 
0.76 respectively. 
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1. Introduction  

Hydraulic fracturing is a highly effective 
methodology for the improvement of the 
production rate of oil and gas wells as well as 
enhancing the formation capacity for injection 
wells. In this method, injection fluid is pumped into 
a reservoir formation at high pressure to induce 
additional fractures. Subsequently, sand/propant 
is pumped into the reservoir to keep the fractures 
open to maintain the permeability and sustain the 
conductivity after the fracturing process is 
completed. In the hydraulic fracturing design 
simulation for fractures, the key input data 
including Young's modulus and Poisson's ratio, are 
related to the mechanical properties of rock 
formation (Tu et al., 2017). 

For the fracture simulations, Young's module, 
Poisson's ratio, and other geomechanical 
parameters of formations are typically determined 
by core compression tests and the interpretation 
from well-log data. However, there are some 
limitations to the application of these methods. The 
values obtained from well log data interpetation 
shall be indicated as "Dynamic", thus they are not 
suitable for wellbore stability analysis. To obtain 
reliable calculation in the wellbore stability 
analysis, it is necessary to convert “Dynamic” to 
“Static” values in the geological condition 
respectively. References suggest that the Dynamic 
Poisson's ratio is higher than the Static Poisson's, 
and the relationship between them is not clear, 
especially for low-deformative rock formations. 
The differences between these values are 
explained by the influence of porosity, size and 
orientation of fractures. Finding an appropriate 
conversion formula requires significant time, cost, 
and relative complexity (Abdallah et al., 2014; Lal, 
1999). Core compression tests in the laboratory 
offer a high accuracy but they require available 
core samples, additional equipment, and 
sometimes the need for supplementary core 
measurement results, which consume time and 
sampling costs (Müller et al., 2019). 

Researchers face the challenge of establishing 
a causal relationship between Poisson's ratio and 
drilling parameters. Some authors, including 
Elkatatny (2021), Mutalova et al. (2020), and 

Siddig et al. (2021), have applied Artificial 
Intelligence (AI) to derive geomechanical 
parameters such as Young's modulus, Poisson's 
ratio, bulk modulus, shear modulus, and minimum 
horizontal stress-from well log data or drilling 
parameters. These AI-driven approaches offer a 
more efficient, cost-effective, and rapid means of 
predicting fracture development and enhancing 
fracturing efficiency. Building on this, studies by 
Abdulraheem et al. (2019) and Ahmed et al. (2021) 
demonstrated the high accuracy of AI models like 
artificial neural networks (ANNs) and adaptive 
neuro-fuzzy inference systems (ANFIS) in 
predicting Poisson’s ratio from well-log data. 
Siddig et al. (2021) further explored real-time 
prediction using drilling parameters and machine 
learning, achieving strong correlations with 
minimal error. Additionally, Müller et al. (2019) 
provided an efficient laboratory method for 
determining Poisson’s ratio, validated against 
traditional techniques. These diverse 
methodologies highlight AI's potential in 
overcoming traditional limitations, particularly in 
correlating Poisson's ratio with various influencing 
parameters, including real-time drilling data.  

Building on these advancements, this study 
aims to compare the performance of two models: 
Random Forest (RF) and Decision Tree (DT). By 
evaluating their accuracy and efficiency in 
predicting the Poisson coefficient, this study seeks 
to determine which model offers superior 
performance and robustness for this application.  

2. Data Description and Analysis 

2.1. Data Description  

In this study, data was collected from drilling 
operations in the Bach Ho field, offshore Vietnam. 
The drilling parameters and related Poisson's ratio 
values while drilling a 8 ½” hole section shall be 
utilized. Meanwhile, the lithological composition of 
the Oligocene formation (from upper to lower) 
consists of shalestone and sandstone as given in 
Figure 1. Well A contributed a total of 714 data 
points used for building the study model. Among 
those data points, there are 70% of the data are 
used for the training set and the rest is used for 
model verification. On the other hand, 196 data 
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points from Well B were used for model validation. 
In addition to Poisson's ratio as the output, each 
data point contains drilling parameters used as 
input parameters. The drilling parameters listed 
below were measured in the field and used to build 
a predictive model: 

- Weight on bit (WOB); 
- Torque on bit (TQR); 
- Standpipe pressure (SPP);  
- Rotary speed (RPM); 
- Flow rate (FLOWIN); 
- Rate of penetration (ROP). 

2.2. Data Analysis 

Before running the data through machine 
learning algorithms, the datasets were 
preprocessed to remove noise and outliers using 
the Z-score method (Tripathy et al., 2013), 
analyzing the data based on the correlation 
between two variables. Statistical analysis of the 
dataset used for model construction is presented in 
Table 1.

Figure1. Lithology column for Well A. 
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The selection of input data for training and 
testing process is an important step that 
determines the accuracy of the model. The 
correlation coefficients between the Poisson's ratio 
and different drilling parameters are presented in 
Figure 2. From Figure 2a, it can be observed that 
the correlation coefficients between the drilling 
parameters and Poisson's ratio are all below 0.5. 
Therefore, applying artificial intelligence models 
will offer better results than linear regression 
methods as they can approximate more complex 
relationships. 

In Figure 2b, a relatively strong correlation is 
shown between the Poisson's ratio and some 
drilling parameters such as standpipe pressure 
(SPP), torque on bit (TQR), weight on bit (WOB), 
and rate of penetration (ROP). Lower correlation 
coefficients for other parameters do not 
necessarily imply the absence of a relationship 
between these inputs and the Poisson's ratio. It 
indicates that a linear equation does not 
adequately describe the relationship between the 
inputs and the output. These analyses highlight the 

importance of the parameters. Specifically, it is 
shown that achieving 95% importance requires 6 
parameters. This indicates that the selected dataset 
is highly reliable and that the chosen features are 
crucial for ensuring model accuracy. 

3. Methodology 

In prediction stage of the Poisson's ratio from 
drilling parameters, the authors utilise an 
algorithm flowchart as given in Figure 3. The input 
data consists of drilling parameters and actual 
Poisson's ratio from two wells, A and B. Data from 
well A was split into a train set (70%) and a test set 
(30%) for the model training process. Data from 
well B was used as an independent test set to 
validate the accuracy of the trained model. 

Random Forest and Decision Tree Algorithms 

With the aim of building the relationship 
between Poisson’s Ratio and drilling parameters, 
two machine learning algorithms, DT and RF, were 
used separately. Both algorithms could perform

 
 

 ROP WOB RPM TQR SPP FLOWIN POISSON 
Count 714 714 714 714 714 714 714.000 
Mean 17.44 8.27 117.47 1575.95 195.26 37.78 0.316 

Std 9.99 1.90 20.96 204.29 24.18 9.30 0.029 
Min 0.78 2.33 40.00 1037.60 143.32 22.06 0.200 
25% 11.86 7.07 116.00 1534.15 184.28 34.77 0.301 
50% 17.35 8.41 121.00 1593.30 202.85 38.05 0.320 
75% 21.07 9.20 122.00 1669.88 212.06 38.10 0.337 
Max 45.40 13.87 161.00 2185.30 224.00 54.64 0.392 

 

Table 1. Input database. 

Figure 2. The correlation between predicted coefficient and the parameters used for prediction stage. 
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classification and regression tasks, but for this 
paper, only regression was employed and 
discussed. 

Decision Tree 

The training data for DT Regression is 
represented as (x, y) = (x1, x2, ..., xk, y), where: y is 
the target variable (Poisson coefficient) and x1, x2,..., 
xk are independent variables of drilling 
parameters. 

The process of building a regression DT 
involves two steps (James et al., 2017): 

a. Prediction space, which is the set of 
values for x1, x2, ..., xk, is divided into J 
distinct and non-overlapping regions, R1, 
R2, ..., RJ. 

b. For all of the observed variables in the 
region Rj, the same prediction is made, 
which is the average value of the target 
variable for training observations in Rj.  

To build optimal regions R1, R2, ..., RJ, the 
prediction space is divided into multidimensional 
boxes that minimize the residual sum of squares 
(RSS): 

𝑅𝑆𝑆 =  ∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑗
)2

𝑖∈𝑅𝑗

𝐽
𝑗=1   

(1) 

Where y ̂(Rj) - is the average value of the target 
variable in the jth box. 

Random Forest 

RF is an ensemble learning algorithm 
proposed by Breiman in 2001 (Breiman, 2001). It 
constructs a large number of random decision 
trees on bootstrapped training samples and 
aggregates their predictions by averaging the 
results (James et al., 2017). It has become a major 
data mining tool for both regression and 
classification problems. Recently, the consistency 
of RF has been proven by Scornet in 2015 (Scornet 
et al., 2015). Compared to other machine learning 
algorithms like neural networks, RF can achieve 
relatively high prediction performance with only a 
few adjustable parameters (Genuer et al., 2017).  

There are several open-source 
implementations of DT and RF algorithms, among 
which scikit-learn (Pedregosa et al., 2011; 
https://scikit-learn.org/) is a widely machine 
learning library chosen for these studies, with the 
parameter sets described in the next section. 

Selection of Parameter Sets for RF and DT 
Algorithms 

The selection of parameters for both the RF 
and DT algorithms is described in step 3 of the 
algorithm flowchart in Figure 3. The parameters 
for both algorithms are presented in Table 2 and 
Table 3, respectively (https://scikit-learn.org/). 

Model Performance: 

To evaluate all model experiments, five 
statistical metrics were employed: the correlation 
coefficient (R), the average absolute percentage 
error (AAPE), the mean absolute error (MAE), the 
coefficient of determination (R²), and the root 
mean square error (RMSE). These metrics were 
calculated using the following equations: 

𝑅

=
[𝑁 ∑ (𝜇𝑔𝑖𝑣𝑒𝑛 𝑖  × 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖

𝑁
𝑖=1 )] − [∑ (𝜇𝑔𝑖𝑣𝑒𝑛 𝑖  × 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖

𝑁
𝑖=1 )]

√[𝑁 ∑ (𝜇𝑔𝑖𝑣𝑒𝑛 𝑖)
2 − (∑ 𝜇𝑔𝑖𝑣𝑒𝑛 𝑖)

𝑁
𝑖=1

2𝑁
𝑖=1 ] [𝑁 ∑ (𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖)

2 − (∑ 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖)𝑁
𝑖=1

2𝑁
𝑖=1 ]

 (2) 

𝐴𝑃𝐸 =

∑
𝜇𝑔𝑖𝑣𝑒𝑛 𝑖 − 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖 

𝜇𝑔𝑖𝑣𝑒𝑛 𝑖
× 100%𝑁

𝑖=1

𝑁
 (3) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝜇𝑔𝑖𝑣𝑒𝑛 𝑖 − 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖|

𝑁

𝑖=1

 (4) 

Figure 3. Flow chart for generation of AI model. 
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𝑅2 = 1 −  
∑ (𝜇𝑔𝑖𝑣𝑒𝑛 𝑖 − 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖)

2𝑁
𝑖=1

∑ (𝜇𝑔𝑖𝑣𝑒𝑛 𝑖 − 𝜇̅𝑔𝑖𝑣𝑒𝑛 𝑖)
𝑁
𝑖=1

   (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝜇𝑔𝑖𝑣𝑒𝑛 𝑖 − 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖)

2
𝑁

𝑖=1

 (6) 

Where: 𝜇𝑔𝑖𝑣𝑒𝑛 - The actual Poisson coefficient 

based on the geological literature; 𝜇̅𝑔𝑖𝑣𝑒𝑛 - The 

mean (average) of all actual values; 𝜇𝑔𝑖𝑣𝑒𝑛 - across 

the dataset; 𝜇𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  - The predicted Poisson 
coefficient; N - Total number of data points. 

For each RF and DT model, an optimal set of 
parameters was used. The Grid Search algorithm 
was employed to identify the best model by 
examining all possible values or names for each 
parameter. This approach is detailed in Section 3, 
Methodology. After conducting iterations of the 
algorithm flow depicted in Figure 3 and using the 
parameters listed in Tables 2 and 3, the best-
performing parameter set was selected for each 
model. For the RF model, the optimal parameters 
were: 'n_estimators': 400, 'min_samples_split': 3, 
'min_samples_leaf': 2, 'max_features': 'sqrt', 
'max_depth': 20, 'bootstrap': False. For the DT 
model, the selected parameters were: 
'min_samples_split': 5, 'min_samples_leaf': 1, 
'max_features': 'auto', 'max_depth': 10. 
Performance metrics for these parameter sets have 
been included in the revised tables to facilitate the 
identification of the optimal configurations. 

 
 
 

Parameter Value 
n_estimators 400 
max_features sqrt 

max_depth 20 
min_samples_split 3 
min_samples_leaf 2 

bootstrap False 

 
 
 

Parameter Value 
max_features auto 

max_depth 10 
min_samples_split 5 
min_samples_leaf 1 

3. Results and Discussions 

The performance of the predictive models was 
evaluated using five statistical metrics to show 
their accuracy and reliability. The key results are 
summarized in Table 4. 

 
 

Dataset Metrics DT RF 

Train set 

R 1 0.97 

AAPE 2.0x10^-16 (≈0) 1.03 

R2 1.00 0.98 

RMSE 6.1x10^-16 (≈0) 0.41 

MAE 6.8x10^-17 (≈0) 0.28 

Test set 

R 0.71 0.74 
AAPE 2.73 2.82 

R2 0.69 0.74 

RMSE 1.66 1.53 

MAE 1.15 1.12 

Indepenent 
test set 

R 0.76 0.79 
AAPE 2.95 2.97 

R2 0.67 0.68 

RMSE 1.30 1.27 

MAE 0.93 0.98 

3.1. Random Forest Model 

Training the RF Model using Well A dataset 

The RF model has learned to predict the 
Poisson’s Ratio based on the following parameters: 
Weight on Bit (WOB), Torque on Bit (TQR), 
Standpipe Pressure (SPP), Rotary Speed 
(revolutions per minute) (RPM), Rate of 
Penetration (ROP), and Pump rate In (FLOWIN). 
The model was trained and tested on 714 data 
points from Well A. Figures 4a and 5a illustrate the 
close proximity between the actual (red curve) and 
predicted (blue curve) Poisson coefficients with 
respect to depth for the training and testing 
datasets. The Average Absolute Percentage Error 
(AAPE) values for these datasets are 1.03% and 
2.82%, respectively.  

This is also evident in Figures 4b and 5b, which 
demonstrate the compatibility between the 
predicted and actual Poisson coefficients, with 
correlation coefficients (R) of 0.972 and 0.742, 
respectively. 

Table 2. Optimum set of parameters for the 
 RF model. 

Table 3. Optimum set of parameters for the  
DT model. 

 

Table 4. Summary results of evaluation metrics. 
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Validating the trained RF model using an 
independent test set of Well B 

The RF model created by using data from Well 
A was evaluated by using 196 data points from 
Well B. Figures 6a and 6b demonstrate the 
accuracy of the model's predictions, with a very 
low Average Absolute Percentage Error (AAPE) of 
only 2.97% and a relatively high correlation 

coefficient (R) of 0.79. These results confirm the 
capability of utilizing the developed empirical 
correlations based on drilling parameters to enable 
the prediction of the Poisson coefficient, as 
demonstrated in this study. The model 
demonstrates high correlation coefficients and low 
errors for the training, testing, and validation 
datasets. This is due to the RF algorithm, which 

Figure 4. Actual and RF predicted Poisson’s ratio for training phase. 

Figure 5. Actual and RF predicted Poisson’s Ratio for testing phase. 

Figure 6. Actual and RF predicted Poisson’s Ratio for trained model using independent test set. 
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constructs an ensemble of decision trees. Each tree 
is built using a bootstrap sample (random 
sampling with replacement), and at each node, the 
best split is determined by randomly selecting a 
subset of features. The generalization error of the 
RF model depends on the accuracy of each 
individual tree and the interactions among the 
trees. The RF algorithm achieves high accuracy 
compared to current supervised learning 
algorithms by maintaining low bias (error 
unrelated to the training data) and using 
randomness to ensure low correlation between the 
trees. 

3.2. The Decision Tree Model  

Training the DT Model using Well A dataset  

The DT was trained and tested on 714 data 
points from Well A. The DT model also achieved 
high accuracy, as shown in Figures 7a and 8a, with 
Average Absolute Percentage Error (AAPE) values 
of 0% and 2.73%, respectively, and correlation 

coefficients (R) of 1 and 0.71 (Figures 7b and 8b). 
The DT model exhibited overfitting for the training 
data, as indicated by an AAPE of 0% and an R value 
of 1 in Figure 7. This is an example of an overfitting 
phenomenon, where the model cannot accurately 
predict the test data despite performing well on the 
training dataset. This occurs because the model 
memorizes the training data too well and becomes 
dependent on it, which prevents it from 
generalizing the rules to work with unseen data 
(validation), a common issue with DT algorithms. 
However, it still demonstrated high accuracy on 
the test and independent test sets, as shown in 
Figures 8 and 9. 

Validating the trained DT model using an 
independent test set of Well B. 

Figures 9a and 9b illustrate the correlation 
between the predicted Poisson coefficients and the 
actual Poisson coefficients of the validation dataset. 
Figure 9b clearly shows that the predicted curve 
(blue) of the Poisson value has very similar trends  

Figure 7. Actual  and DT predicted Poisson’s Ratio for training phase. 

Figure 8. Actual  and DT predicted Poisson’s Ratio  for testing phase. 
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with the actual curve (red) values, especially at the 
depths from about 3040÷3060 m and from 
3080÷3120 m. In addition, Figure 9b shows that all 
data points are very close to the diagonal line at 45 
degrees, confirming the high predictive ability of 
the DT model with an estimated correlation 
coefficient (R) of 0.76 and an Average Absolute 
Percentage Error (AAPE) of 2.95%. This further 
supports the effectiveness of the DT model in 
accurately predicting the Poisson coefficient. The 
DT algorithm model for forecasting the Poisson 
coefficient on the validation dataset has a mean 
absolute percentage error (AAPE) of 2.95% and a 
correlation coefficient R of 0.76. It is observed that 
the validation set shows only an average 
correlation coefficient due to one of the common 
limitations of the DT algorithm: they often struggle 
with time-dependent data, which may prevent the 
construction of an optimal tree. Additionally, there 
is a risk of overfitting (creating trees that closely fit 
the training data or become overly complex) and a 
tendency to favor features with more values. 

4. Conclusions and Recommendations 

Poisson's ratio is usually determined by two 
traditional methods: sound wave method and core 
testing for compressive strength methodology. 
However, the databases for input data are not 
always available. The application of artificial 
intelligence for predicting Poisson’s Ratio by using 
drilling parameters as discussed in this paper has 
shown promising results and potential use for 
estimating Poisson’s Ratio. The following 
conclusions and recommendations can be drawn 
based on the presented findings: 

- Compared to other conventional methods, 
using AI to build models for predicting the 
Poisson’s Ratio from drilling parameters could 
establish a good correlation between the Poisson’s 
Ratio and the relevant parameters. This method 
provides an effective prediction tool for hydraulic 
fracturing and various other applications in the oil 
& gas industry. It also saves cost, time, and 
overcomes the lack of available data, additional 
measuring equipment, and supplementary core 
sample measurements. Therefore, predicting the 
Poisson coefficient from drilling data using models 
built from AI offers practical benefits. 

- Both machine learning algorithms RF and DT 
were investigated in this study and provided 
promising results. In comparisons between those 
two methods, the RF model demonstrated better 
prediction performance for the Poisson coefficient. 
The optimization of different parameters used in 
the algorithm has been presented, resulting in the 
best-performing model. 

- The correlation ratio between the actual and 
predicted values ranged from 0.74÷0.79, with an 
AAPE consistently less than 3%. The RF is the best-
performing model for predicting the Poisson 
coefficient and showed good performance with 
different datasets. 

- The results presented in this study indicate a 
promising ability for the application of AI to predict 
the Poisson’s Ratio from drilling data. However, it 
is recommended to work with other machine 
learning methods as well. Additionally, the use of 
drilling data in predicting other geomechanical 
properties can be further investigated by using 
similar approaches. It is noted that the data used in 

Figure 9. Actual  and DT predicted Poisson’s Ratio for trained model using independent test set 
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this study is from a specific area of the Bach Ho field 
in Vietnam, and to create a more diverse prediction 
model, testing with data from other basins should 
be considered. 

- Overall, the application of artificial 
intelligence for predicting the Poisson’s Ratio by 
using drilling data holds great potential use for 
improving efficiency and accuracy in the oil and gas 
industry. Further research and development in this 
field can lead to valuable insights and practical 
applications. 
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