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 Forest fires pose significant risks to ecosystems, biodiversity, human health, 
and the economy, with escalating global impacts. In Vietnam, particularly 
during the dry season, the rising threat of forest fires necessitates accurate 
predictive models for effective prevention and management. This study 
advances forest fire susceptibility mapping in Gia Lai province by leveraging 
optimized machine learning models. We evaluated five models - Deep Neural 
Networks (DNN), Random Forest (RF), Gradient Boosting (GB), Logistic 
Regression (LR), and Support Vector Machines (SVM) - using a dataset of 
2,827 fire incidents (2007÷2021), an equal number of non-fire points, and 12 
influencing factors: slope, aspect, elevation, curvature, land use, NDVI 
(Normalized Difference Vegetation Index), NDWI (Normalized Difference 
Water Index), NDMI (Normalized Difference Moisture Index), temperature, 
wind speed, relative humidity, and rainfall. Among the models, RF 
outperformed others and was further optimized using Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO), and Bayesian Optimization (BO). 
The Acc-GA-Opt-RF model (Accuracy-Optimized Random Forest using GA) 
achieved the best performance, with 84.4% accuracy, an AUC (Area Under 
the ROC Curve) of 0.9083, PPV (Positive Predictive Value) of 88.2%, NPV 
(Negative Predictive Value) of 81.2%, sensitivity of 79.3%, specificity of 
89.4%, F-score of 0.8354, and Kappa of 0.687, demonstrating significant 
improvements over the unoptimized RF model. Factor importance analysis, 
employing Average Impurity Decrease (AID) and Permutation Feature 
Importance (PFI), identified NDVI and NDWI as key predictors, highlighting 
the critical role of vegetation indices in forest fire susceptibility. The optimized 
RF model was utilized to generate a forest fire susceptibility map 
categorizing the region into six risk levels, providing actionable insights for 
targeted fire prevention and management in Gia Lai province. 
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1. Introduction 

Forest fires are highly destructive natural 
disasters that cause ecosystem damage, 
biodiversity loss, forest degradation, and 
greenhouse gas emissions, posing significant 
threats to human health and the economy 
(Anandaram et al., 2023). In Vietnam, particularly 
during dry seasons, these fires are often triggered 
by extreme weather and human activities such as 
slash-and-burn agriculture, leading to the loss of 
over 7,500 ha of forest in the past five years 
(VietNamNet Global, 2022). The rising frequency 
and severity of forest fires, intensified by climate 
change, highlight the urgent need for accurate 
predictive models to reduce environmental and 
economic impacts and protect human lives 
(Flannigan et al., 2009). 

Machine learning (ML) models are crucial for 
predicting forest fire susceptibility, utilizing 
extensive datasets on weather, topography, 
vegetation, and historical fire data (Abid, 2021; 
Bui et al., 2018; Le et al., 2020). High-performance 
models like DNN, RF, and GB have proven 
effective in forest fire prediction (Le et al., 2021; 
Sathishkumar et al., 2023). Ensemble models such 
as RF and GB excel due to their ability to manage 
complex data and enhance prediction accuracy 
(Jain et al., 2020; Sarkar et al., 2024). 

Optimizing hyperparameters is essential for 
enhancing ML model performance, especially in 
forest fire prediction (Al-Shabeeb et al., 2023; Bui 
et al., 2017; Islam et al., 2023). This study focuses 
on optimizing ML models to improve forest fire 
susceptibility mapping in Gia Lai province, 
Vietnam. We evaluated DNN, RF, GB, and 
benchmark models like LR and SVM. The RF 
model performed best and was further optimized 
using GA, PSO, and BO. The Acc-GA-Opt-RF model 
achieved superior performance with 84.4% 
accuracy, an AUC of 0.9083, and marked 
improvements in PPV, NPV, sensitivity, and 
specificity over the unoptimized RF model. 

Feature importance was assessed using AID 
and PFI, with NDVI and NDWI identified as the 
most influential predictors of forest fire 
susceptibility. NDVI was the top factor, with 
importance values of 0.221 (AID) and 0.256 (PFI), 
highlighting the critical role of vegetation indices 
in fire risk prediction. 

The optimized RF model was used to 
generate a forest fire susceptibility map for Gia 
Lai, categorizing the region into six risk levels, 
providing essential insights for targeted fire 
prevention and management. The study 
demonstrates the effectiveness of optimized ML 
models in enhancing predictive accuracy and 
supporting fire risk mitigation in high-risk areas. 

The paper is structured as follows: Section 2 
reviews the algorithms and optimization 
methods. Section 3 describes the study area and 
GIS database. Section 4 outlines the modeling 
methodology. Section 5 presents results and 
discusses model performance and factor 
significance. Section 6 concludes with key 
findings. 

2. Background of the Algorithms Used 

2.1. Benchmark Models 

Benchmark models play a crucial role in 
developing and refining machine learning models 
by providing a baseline for comparison, helping to 
determine if new models outperform existing 
methods. In this study, LR, SVM, and DNN are used 
as benchmark models. LR offers a straightforward 
baseline for binary classifications, including forest 
fire susceptibility (Chang et al., 2013). SVM is 
effective for high-dimensional data, utilizing 
kernel functions to adapt to various data 
structures (Singh et al., 2021). DNN excels in 
capturing complex patterns through multiple 
hidden layers, addressing challenges beyond 
simpler models (Le et al., 2021). 

2.2. Ensemble Learning 

Ensemble learning models combine simpler 
models into a composite, providing higher 
accuracy and reducing variance and bias, thereby 
minimizing overfitting (Russell & Norvig, 2021). 
Their enhanced performance makes them 
preferred for assessing forest fire susceptibility 
(Hoang et al., 2023; Singh & Jeganathan, 2024). 

2.2.1. Random Forest 

RF combines multiple decision trees to create 
a more accurate and robust model, reducing 
overfitting and enhancing prediction accuracy, 
making it effective for large, complex datasets 
(Breiman, 2001). Its versatility and reliability 
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make RF a preferred choice for predicting forest 
fires (Gao et al., 2023; Singh & Jeganathan, 2024). 
RF’s capability to assess feature importance also 
aids in improving prediction accuracy. 

Optimizing key RF hyperparameters is 
crucial for maximizing classification performance, 
particularly in forest fire susceptibility prediction 
(Bar et al., 2023). Key hyperparameters include 
(Breiman, 2001) : (1) n_estimators, which 
determines the number of trees and affects 
accuracy and overfitting risk; (2) max_depth, 
which controls tree complexity; (3) max_features, 
impacting model generalization; (4) 
min_samples_split, managing the minimum 
samples required to split nodes to prevent 
overfitting; and (5) min_samples_leaf, reducing 
overfitting by setting the minimum samples at leaf 
nodes. The careful tuning of these parameters 
enhances accuracy and model generalization on 
new data. 

2.2.2. Gradient Boosting 

Boosting combines multiple weak learners 
sequentially, creating a strong model where each 
step corrects the previous errors. Gradient 
Boosting (GB) refines models by minimizing 
errors through gradient optimization. Key GB 
algorithms include AdaBoost, XGBoost, and 
CatBoost: AdaBoost enhances weak models' 
accuracy, XGBoost offers high performance and 
scalability, and CatBoost excels with categorical 
data (Russell & Norvig, 2021). GB algorithms are 
highly effective in classification tasks, including 
forest fire prediction (Koh, 2023). 

2.3. Optimization Algorithms 

Common optimization algorithms include 
BO, GA, and PSO. BO improves search efficiency by 
using past trial data to predict future outcomes 
(Islam et al., 2023). GA, inspired by evolutionary 
processes like selection, crossover, and mutation, 
identifies optimal hyperparameters (Al-Shabeeb 
et al., 2023). PSO, modeled on animal behavior, 
uses particles representing solutions that explore 
the search space through shared and individual 
experiences (Bui et al., 2017). 

3. The Study Area and GIS Database 

3.1. The Study Area 

Gia Lai province (Figure 1) is situated in 
south-central Vietnam, covering 15,510 km². Its 
topography varies from 1,748 m at Kon Ka Kinh 
mountain in K’Bang district to 80 m in Krongpa 
district. In 2022, the province had a population of 
1.591 million, with a density of 103 people/km². 
The economy relies heavily on agriculture, 
forestry, and fishing, contributing 22.2% to the 
GDP, with industry and construction at 18.96%, 
and retail and services at 58.84% (General 
Statistics Office, 2023).  

Agricultural and forested lands make up 
90.14% of Gia Lai’s area, with residential areas 
comprising 1.11%. The province has 648,300 ha 
of forest, including 478,800 ha of natural forest 
and 169,500 ha of planted forest (General 
Statistics Office, 2023). Frequent forest fires over 
the last decade have put 216,153 ha at high 
susceptibility, especially in planted, deciduous, 
and mixed bamboo forests (Nguyen, 2021). 

Gia Lai experiences a tropical monsoon 
highland climate with high humidity and 
significant rainfall (Van et al., 2014). The rainy 
season spans from May to October, while the dry 
season runs from November to April. The average 
annual temperature ranges from 22 to 25°C, with 
annual rainfall between 2100 and 2200 mm (Le et 
al., 2021). 

3.2. Forest Fire Inventory 

This study utilizes a database of 2,827 forest 
fire incidents recorded from 2007 to 2021 (Figure 
1c), originally compiled by Le et al. (2020) and 

Figure 1. (a) and (b) Location of Gia Lai province, 
(c) Gia Lai province and forest fire locations map. 
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subsequently updated with recent data. Fire 
locations were sourced from the Forest 
Protection Department's database 
(http://www.kiemlam.org.vn). The 2020-2021 
dry season saw increased fire activity, with ten 
major fires affecting over 177 ha (Nguyen, 2021). 
Statistical analysis indicates that around 80% of 
fires occurred during the dry season, mainly 
between January and April. Severe fires were 
particularly noted in 2010, 2013, 2015, and 2016, 
largely driven by El Niño–Southern Oscillation 
events, causing droughts and a 12% reduction in 
rainfall (Sutton et al., 2019). In contrast, La Niña 
years, like 2011, experienced minimal fire activity 
(Le et al., 2021). 

3.3. Influencing Factors  

Forest fires result from ignition sources and 
various factors, including topography, vegetation, 
climate, and human activities (Cary et al., 2009). 
Identifying these influencing factors is essential 
for modeling forest fire susceptibility. This section 
outlines the factors considered in this study, with 
detailed descriptions available in (Le et al., 2021). 

3.3.1. Topographical factors 

Topography significantly influences forest 
fires through indirect and direct effects. Terrain 
variations create microclimates that affect 
temperature, vegetation cover, and tree species 
distribution, indirectly impacting fire occurrence 
and spread (Mermoz et al., 2005). Key factors like 

slope, aspect, elevation, and curvature directly 
influence fire spread and flammability. Slopes 
accelerate fire spread compared to flat areas 
(Dupuy & Maréchal, 2011), aspect affects solar 
radiation and vegetation moisture (Bennie et al., 
2008), higher elevations with cooler 
temperatures and more precipitation reduce fire 
risk (Chen et al., 2018), and curvature alters soil 
conditions, affecting ignition probability (Hilton et 
al., 2016).. This study utilized a 30 m-resolution 
DEM of Gia Lai province to extract and analyze 
these factors (Figure 2) to evaluate their impact 
on forest fire behavior. 

3.3.2. Human-Induced and Vegetation Factors 

Human activities are a primary driver of 
forest fires globally, as population growth 
increases pressure on ecosystems, leading to 
deforestation and intensified land use, which 
elevate fire risks, especially in certain tree species 
(Viedma et al., 2017). Therefore, land use is a 
critical factor in forest fire prediction. In this 
study, we developed a land use map (Figure 3) 
with eleven categories based on district-level land 
use plans from Gia Lai province, provided by the 
People's Committee at a 1:50,000 scale. 

For vegetation factors, we used the 
Normalized Difference Vegetation Index (NDVI) 
to assess vegetation health and fire fuel potential 
(Carlson & Ripley, 1997). Additionally, the 
Normalized Difference Water Index (NDWI) and 
Normalized Difference Moisture Index (NDMI) 

Figure 2. (a) Elevation map, (b) Slope map, (c) Aspect map, and (d) Curvature map. 
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were used to evaluate vegetation water content 
and fuel moisture. These indices are crucial in 
predicting fire behavior due to their influence on 
fuel conditions. NDVI, NDWI, and NDMI were 
derived from 2021 Landsat-8 OLI satellite images 
with a 30 m resolution from the USGS 
EarthExplorer portal, following methods by 

(Tucker, 1979), (McFeeters, 1996), and (Wilson & 
Sader, 2002): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 −  𝑅𝑒𝑑 𝑏𝑎𝑛𝑑

𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 + 𝑅𝑒𝑑 𝑏𝑎𝑛𝑑
         

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 −  𝑁𝐼𝑅 𝑏𝑎𝑛𝑑

𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 + 𝑁𝐼𝑅 𝑏𝑎𝑛𝑑
  

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 − 𝑆𝑊𝐼𝑅 𝑏𝑎𝑛𝑑

𝑁𝐼𝑅 𝑏𝑎𝑛𝑑 + 𝑆𝑊𝐼𝑅 𝑏𝑎𝑛𝑑
   

Where NIR and SWIR represent the Near-
Infrared and Short-Wave Infrared spectral bands, 
respectively. The maps of NDVI, NDWI, and NDMI 
are presented in Figure 4. 

3.3.3. Meteorological Factors  

Research has shown a strong link between 
climate change and forest fire patterns (Lacroix et 
al., 2020), highlighting the need to include 
climate-related factors in our analysis.  

We selected four key climatic variables: 
temperature, wind speed, relative humidity, and 
rainfall (Figure 5), with data from 2007÷2021 
sourced from https://www.ncdc.noaa.gov/. 
Temperature impacts soil moisture and directly 
influences plant combustion (Pourtaghi et al., 
2016), and rising temperatures reduce vegetation 
moisture, elevating fire risk (Gillett et al., 2004). 
Wind speed affects fire spread by altering fuel 
moisture and supplying oxygen (Alexandridis et 

Figure 3. Land use map. 

Figure 4. (a) NDVI map, (b) NDWI map, and (c) NDMI map. 
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al., 2008). Relative humidity and precipitation 
significantly impact fuel moisture, which is crucial 
for fire ignition  (Liu et al., 2013) 

3.4. GIS Database 

Developing machine learning models for 
forest fire susceptibility required a GIS database 
with a detailed fire inventory and 12 influencing 
factors, including topography, vegetation indices, 
and climatic variables. The database was built in 
ArcGIS 10.6 and stored in ESRI file geodatabase 
format. Due to the binary classification nature of 
forest fire prediction (Bui et al., 2017), the dataset 
includes both fire and non-fire occurrences, with 
2,827 non-fire data points added, totaling 5,654 
samples. These non-fire points were selected 
using the “Create Random Points” tool in ArcGIS, 
ensuring they were evenly distributed across the 
study area, distanced from fire points, and placed 
outside fire-prone regions, such as forested or 
flammable areas. The dataset was normalized by 
converting categorical data to a numerical scale 
from 0.01 to 0.99 (Le et al., 2020). It was then split 
into a training set of 4,240 samples (75%) and a 
test set of 1,414 samples (25%). The process of 
creating the GIS database, and the training and 
test sets, is illustrated in Figure 6. 

4. Modeling Methodology 

4.1. Modeling Process 

We first built benchmark models using the 
training dataset and evaluated them on the test 
dataset to identify the most promising one for 
further optimization. Optimization was then 
performed using BO, PSO, and GA techniques. The 
model with the highest post-optimization 
performance was selected for forest fire 
susceptibility mapping in the study area. This 
process is shown in Figure 7. 

4.2. Model Performance Assessment 

We assessed the models using binary 
classification metrics, categorizing outcomes as 
true positives (TP), false negatives (FN), true 
negatives (TN), and false positives (FP). Key 
metrics included PPV, NPV, sensitivity (Sen), 
specificity (Spe), false positive rate (FPR),

Figure 5. (a) Temperature, (b) Winspeed, (c) Humidity, and (d) Rainfall. 

Figure 6. The creation of the GIS database. 
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accuracy (Acc), F1 Score (F-score), and Cohen’s 
Kappa (Kappa), providing insights into the 
models' accuracy in classifying fire and non-fire 
events. The ROC curve and AUC were used to 
evaluate classification performance. Analyses 
were conducted on both training and test datasets 
to assess model fitting and predictive power (Le 
et al., 2020; Le et al., 2021). The following metrics 
were calculated (Powers, 2011): 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
; 𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; 𝑆𝑝𝑒 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
; 𝐴𝑐𝑐 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

𝐾𝑎𝑝 =
2×(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑃)×(𝐹𝑃+𝑇𝑁)+(𝑇𝑃+𝐹𝑁)×(𝐹𝑁+𝑇𝑁)
  

4.3. Construction of Benchmark Models  

The benchmark models (LR, SVM, CatBoost, 
AdaBoost, XGBoost, RF, and DNN) were trained 
with default hyperparameters, except for the 
DNN, which was optimized using PSO. The DNN 
architecture, fine-tuned with 2÷5 hidden layers 
and 5÷50 neurons per layer, used ReLU activation 
and the Adam optimizer, while the output neuron 
used sigmoid activation. Five-fold cross-
validation minimized overfitting, and the optimal 
architecture consisted of 5 hidden layers with 36, 
50, 22, 46, and 5 neurons. 

4.4. Benchmark Model Evaluation and 
Selection 

The benchmark models were evaluated on 
the test dataset to establish a performance 
baseline, serving as a reference for subsequent 
optimizations. The RF model outperformed 
others in key metrics, including Acc, AUC, F-score, 
and Kappa (Table 1), and was thus chosen for 
further optimization. 

 
Table 1. Key performance metrics of the 
benchmark models on the test dataset. 

Model Acc AUC F-score Kappa 

LR 61.0% 0.6328 0.6063 0.219 

SVM 62.8% 0.7041 0.5731 0.256 

CatBoost 77.0% 0.8574 0.7459 0.540 

AdaBoost 81.0% 0.8497 0.8066 0.620 

XGBoost 81.8% 0.8772 0.8103 0.636 

RF 82.4% 0.8819 0.8178 0.648 

DNN 78.9% 0.8619 0.7916 0.579 

 

4.5. Model Optimization 

The RF model was optimized using BO, PSO, 
and GA to refine hyperparameters, including 
n_estimators, max_depth, max_features, 
min_samples_split, and min_samples_leaf, aiming 
to enhance accuracy/AUC for effective fire 
prediction. Optimization was validated via five-
fold cross-validation within the following 
constraints: n_estimators (10÷200), max_depth 
(5÷40), max_features (1÷12), min_samples_split 
(2÷5), and min_samples_leaf (1÷5), using an 
initial population of 20 and 50 iterations. 

5. Results and Discussion 

5.1. Performance Evaluation of Optimized RF 
Models 

The RF model optimization aimed to improve 
accuracy (Acc)/AUC by fine-tuning the 
hyperparameters using BO, PSO, and GA. The 
optimized hyperparameter values are shown in  

Table 2. The performance of these optimized 
models on both the training and test datasets is 
summarized in Table 3 and Table 4, along with the 
results of the unoptimized RF model. 

 

Figure 7. Modeling process. 
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Table 2. Hyperparameter values of the optimized RF models. 
Model max_depth max_features min_samples_leaf min_samples_split n_estimators 

AUC-BO-Opt-RF 32 5 2 2 200 
AUC-PSO-Opt-RF 30 3 1 3 123 
AUC-GA-Opt-RF 35 3 1 2 96 
Acc-BO-Opt-RF 36 4 2 3 55 
Acc-PSO-Opt-RF 37 3 2 3 151 
Acc-GA-Opt-RF 40 3 1 2 100 

 
Table 3. Performance metrics of unoptimized and optimized RF models on the training dataset. 
Model TP FN FP TN Acc, % AUC, % PPV, % NPV, % Sen, % Spe, % F-score Kappa 

RF 2046 74 39 2081 97.3 0.9952 98.1 96.6 96.5 98.2 0.9731 0.947 
Acc-BO-Opt-RF 2099 21 8 2112 99.3 0.9986 99.6 99.0 99.0 99.6 0.9931 0.986 
Acc-PSO-Opt-RF 2104 16 13 2107 99.3 0.9987 99.4 98.4 98.3 99.4 0.9889 0.986 
Acc-GA-Opt-RF 2103 17 12 2108 99.3 0.9994 99.4 99.2 99.2 99.4 0.9932 0.986 
AUC-BO-Opt-RF 2078 42 9 2111 98.8 0.9994 99.6 98.0 98.0 99.6 0.9879 0.976 
AUC-PSO-Opt-RF 2085 35 12 2108 98.9 0.9993 99.4 99.2 99.2 99.4 0.9932 0.978 
AUC-GA-Opt-RF 2105 15 15 2105 99.3 0.9994 99.4 99.2 99.2 99.4 0.9932 0.986 

 
Table 4. Performance metrics of unoptimized and optimized RF models on the test dataset 

Model TP FN FP TN Acc AUC PPV NPV Sen Spe F-score Kappa 
RF 559 148 101 606 82.4% 0.8819 84.7% 80.4% 79.1% 85.7% 0.8178 0.648 

Acc-BO-Opt-RF 560 147 79 628 84.0% 0.9006 87.6% 81.0% 79.2% 88.8% 0.8321 0.680 
Acc-PSO-Opt-RF 560 147 76 631 84.2% 0.9037 88.1% 81.1% 79.2% 89.3% 0.8340 0.685 
Acc-GA-Opt-RF 561 146 75 632 84.4% 0.9083 88.2% 81.2% 79.3% 89.4% 0.8354 0.687 
AUC-BO-Opt-RF 552 155 77 630 83.6% 0.9074 87.8% 80.3% 78.1% 89.1% 0.8263 0.672 
AUC-PSO-Opt-RF 555 152 80 627 83.6% 0.9099 87.4% 80.5% 78.5% 88.7% 0.8271 0.672 
AUC-GA-Opt-RF 559 148 77 630 84.1% 0.9085 87.9% 81.0% 79.1% 89.1% 0.8325 0.682 

 
The training dataset evaluation revealed that 

all optimized models significantly outperformed 
the unoptimized RF model, with accuracies 
exceeding 98%, highlighting the effectiveness of 
BO, PSO, and GA optimization techniques. 
Specifically, Acc-GA-Opt-RF (GA optimized for 
accuracy) and AUC-GA-Opt-RF (GA optimized for 
AUC) achieved near-perfect AUC values and the 
highest accuracy of 99.3% (Table 3). 

On the test dataset, the Acc-GA-Opt-RF model 
improved accuracy by 2% compared to the 
unoptimized RF, reaching 84.4%, while the AUC-
GA-Opt-RF model increased the AUC by about 3% 
(from 0.8819÷0.9083) (Table 4). These results 
confirm that optimization significantly enhanced 
RF model performance. Although both models 
met their optimization goals, the Acc-GA-Opt-RF 
model slightly outperformed the other in 
accuracy and consistently maintained strong 
performance across all metrics, making it the 
preferred choice for forest fire susceptibility 
mapping.  

The Acc-GA-Opt-RF model demonstrated 
robust performance on both the training dataset 

(Acc = 99.3%, AUC = 0.9994, F-score = 0.9932, 
Kappa = 0.986) and the test dataset (Acc = 84.4%, 
AUC = 0.9083, F-score = 0.8354, Kappa = 0.687), 
with the ROCs and AUC metrics shown in Figure 8. 
These results confirm its strong generalization 
capability and reliability, establishing it as the 
optimal model for mapping forest fire 
susceptibility in the study area.

Figure 8. ROCs and AUC Metrics for the  
Acc-GA-Opt-RF model. 
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Although the Kappa value of 0.69 on the test 
dataset is considered “fairly good” (Landis & Koch, 
1977), the discrepancy between the training and 
test Kappa values suggests a lack of model 
generalization, likely caused by its complexity and 
noise in the training data. 

5.2. Importance of Influencing Factors 

To determine key factors affecting forest fire 
susceptibility, we evaluated their predictive 
importance using two methods: (i) Average 
Impurity Decrease (AID), which uses the Gini 
impurity metric in RF to measure a feature's 
contribution by its ability to reduce classification 
uncertainty (Breiman, 2001), and (ii) 
Permutation Feature Importance (PFI), which 
quantifies feature importance by shuffling feature 
values and assessing the impact on model 
performance, with significant performance drops 
indicating higher importance (Molnar, 2022). 

5.2.1. Factor Importance Using AID 

The evaluation of factor importance in forest 
fires using the AID method in the RF model is 
summarized in Table 5 and Figure 9, ranked by 
decreasing importance. All factors have 
importance values above 0, confirming their 
relevance in predicting forest fires. NDVI is the 
most influential factor (0.221159), followed by 
NDWI (0.106616) and Aspect (0.097736). Other 
significant factors include NDMI, Slope, Curvature, 
and Elevation, with values of 0.091682, 0.078159, 
0.074920, and 0.069838, respectively. Landuse, 
Rainfall, Windspeed, Humidity, and Temperature 
also contribute to the model's predictive accuracy. 

 
Table 5. Importance of factors using AID. 

No. Factor Importance 
1 NDVI 0.221159 
2 NDWI 0.106616 
3 Aspect 0.097736 
4 NDMI 0.091682 
5 Slope 0.078159 
6 Curvature 0.074920 
7 Elevation 0.069838 
8 Landuse 0.059607 
9 Rainfall 0.055011 

10 Windspeed 0.050356 
11 Humidity 0.048165 
12 Temperature 0.046750 

5.2.2. Factor Importance Using PFI 

PFI results from the Acc-GA-Opt-RF model 
ranked NDVI as the most critical factor 
(0.256295), followed by NDWI (0.095150) and 
Aspect (0.091439) (Table 6 and Figure 10). NDMI, 
Slope, and Elevation were also significant, 
emphasizing the roles of moisture and 
topography in fire behavior. Climatic factors like 
Rainfall, Humidity, Windspeed, and Temperature 
showed moderate importance, reflecting the 
influence of weather on fire susceptibility. 

Table 6. Importance of factors using PFI. 
No. Factor Importance 
1 NDVI 0.256295 
2 NDWI 0.095150 
3 Aspect 0.091439 
4 NDMI 0.084813 
5 Slope 0.073946 
6 Elevation 0.071826 
7 Rainfall 0.064140 
8 Humidity 0.058044 
9 Curvature 0.054333 

10 Landuse 0.054333 
11 Windspeed 0.052213 
12 Temperature 0.043467 

Figure 9. Importance of factors using AID. 

Figure 10. Importance of factors using PFI . 
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5.2.3. Discussion of Factor Importance 

Both AID and PFI methods identified NDVI as 
the most important factor (0.221159 and 
0.256295, respectively), aligning with Bui et al.. 
(2018). NDWI, Aspect, NDMI, Slope, and Elevation 
also showed significant importance, highlighting 
the roles of vegetation, topography, and elevation. 
Although Rainfall, Humidity, Curvature, Land Use, 
Windspeed, and Temperature ranked lower, they 
still contributed to improving predictive accuracy, 
emphasizing the combined impact of vegetation, 
topography, and climatic factors on forest fire 
susceptibility mapping. 

The low importance of temperature may be 
due to Gia Lai's stable dry-season temperature 
(18÷250C), resulting in minimal influence on 
forest fire risk (Bui et al., 2018). Similarly, studies 
in other Central Highlands provinces, such as Bui 
et al. (2018) and Le et al. (2020), ranked 
temperature as moderately important, placing it 
sixth among factors. In contrast, Luu et al. (2014) 
in Dak Lak considered temperature significant, 
likely due to greater variability and its effect on 
vegetation drying. This study used objective 
methods (AID and PFI), whereas the Dak Lak 
study relied on expert judgment. 

5.3. Creation of a forest fire susceptibility 
map 

Owing to its superior performance, the Acc-
GA-Opt-RF model was utilized to compute forest 
fire susceptibility probabilities across Gia Lai 
province, which were subsequently converted 
into raster format for integration with ArcGIS.  

The forest fire susceptibility map in Figure 11 
classifies the region into six levels: No Forest Fire 
(0÷0.080), Very Low (0.081÷0.292), Low 
(0.293÷0.488), Moderate (0.489÷0.695), High 
(0.696÷0.905), and Very High (0.906÷1), using 
the Natural Breaks method in ArcGIS 10.6. This 
method was chosen for its effectiveness in 
identifying natural data groupings, minimizing 
within-class variance while maximizing between-
class variance. In this study, the region was 
categorized into six levels, aligning with the data’s 
natural structure. 

The map highlights high-risk zones in Chu 
Pah, Mang Yang, Kong Chro, Ia Grai, and Dak Doa, 
which faced over 177 ha of forest loss during the 

2020-2021 dry season, including two major fires 
in Chu Pah damaging 14.29 ha of planted forests 
(Nguyen, 2021). In contrast, districts like Ayun Pa 
and An Khe showed lower risk due to 
reforestation reducing fuel accumulation. These 
findings emphasize the need for targeted fire 
management strategies, including early warning 
systems, controlled burns, firebreaks, and 
community engagement, to mitigate risks and 
protect ecosystems and local communities. 

6. Concluding remarks 

This study demonstrates the pivotal role of 
optimized machine learning models in predicting 
forest fire susceptibility, particularly in high-risk 
regions like Gia Lai province. We aimed to identify 
and optimize the most effective model among 
commonly used high-performance models for 
forest fire prediction. Among the evaluated 
models - DNN, RF, GB, LR, and SVM - the RF model 
showed superior accuracy and predictive 
capabilities.

Figure 11. Forest fire susceptibility map. 
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Hyperparameter optimization using GA, PSO, 
and BO significantly improved the RF model's 
performance, boosting accuracy by 2% and AUC 
by about 3% compared to the non-optimized 
version. The Acc-GA-Opt-RF model (Accuracy-
Optimized RF using GA) achieved the best results, 
with an accuracy of 84.4%, an AUC of 0.9083, an 
F-score of 0.8354, and a Kappa of 0.687. These 
enhanced metrics enable more reliable 
identification of high-risk fire zones, enhancing 
predictive capabilities in real-world applications. 

Feature importance analysis using AID and 
PFI identified NDVI and NDWI as the most 
influential factors, underscoring the critical role of 
vegetation indices in predicting fire risk. The 
optimized model was used to generate a forest 
fire susceptibility map for Gia Lai, categorizing 
areas into six risk levels. This map offers crucial 
guidance for policymakers and local authorities, 
aiding in targeted fire prevention and 
management strategies. 

Overall, this study highlights that optimized 
machine learning models, supported by insights 
into key influencing factors, can significantly 
enhance predictive accuracy and serve as 
valuable tools for mitigating fire risks in 
vulnerable regions. 
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