Volume computation of quarries in Vietnam based on Unmanned Aerial Vehicle (UAV) data

  • Organ:
    1 Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Vietnam;
    2 Vietnam Association of Georaphy, Cartography and Remotesencing, Vietnam;
    3 Vimico - Lao Cai - Sin Quyen Copper Mine Branch, Vinacomin - Minerals Holding Corporation
  • Keywords: Mine reserves, UAV, DEM, Image control point, GNSS/RTK.
  • Received: 11st-Oct-2019
  • Accepted: 25th-Dec-2019
  • Available online: 28th-Feb-2020
Pages: 21 - 30
View: 7218

Abstract:

The main objective of this study is to evaluate the accuracy of volumetric measurements carried out with the unmanned aerial vehicle (UAV) data in quarries in Vietnam. To accomplish this goal, GNSS/RTK and UAV technologies were employed to collect data at the same time in the Long Son quarry in Thanh Hoa. The data was used to establish DEMs, which were used to calculate the reserve of the quarry. The results of calculating the mine reserves showed that the difference between the two methods was 0.07%; Also, the difference in the height between the two average models was 3.5 cm. This result satisfies the requirements in the Vietnamese standards for mine surveying.

How to Cite
Le, C.Van, Cao, C.Xuan, Le, V.Hong and Dinh, T. 2020. Volume computation of quarries in Vietnam based on Unmanned Aerial Vehicle (UAV) data (in Vietnamese). Journal of Mining and Earth Sciences. 61, 1 (Feb, 2020), 21-30. DOI:https://doi.org/10.46326/JMES.2020.61(1).03.
References

[1]. Alvarado, M., Gonzalez, F., Fletcher, A., & Doshi, A., (2015). Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites. Sensors, 15(8), 19667. Retrieved from http://www.mdpi.com/1424-8220/15/8/ 19667.

[2]. Barry, P., & Coakley, R., (2013). Accuracy of UAV photogrammetry compared with network RTK GPS. Int. Arch. Photogramm. Remote Sens, XL-1 W. 27 - 31.

[3]. Berie, H. T., & Burud, I., (2018). Application of unmanned aerial vehicles in earth resources monitoring: focus on evaluating potentials for forest monitoring in Ethiopia. European Journal of Remote Sensing 51(1). 326 - 335. doi:10.1080/22797254.2018.1432993

[4]. Bui, D. T., Long, N. Q., Bui, X. N., Nguyen, V. N., Van Pham, C., Van Le, C., Kristoffersen, B., (2017). Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment. Paper presented at the International Conference on Geo - Spatial Technologies and Earth Resources.

[5]. Bui, T. D., Nguyen, C. V., Hoang, M. H., Dong, B. P., Nhu, V. H., Tran, T. A., & Nguyen, Q. M., (2016). Xây dựng mô hình số bề mặt và bản đồ trực ảnh sử dụng công nghệ đo ảnh máy bay không người lái. Paper presented at the Hội nghị khoa học: Đo đạc bản đồ với ứng phó biển đổi khí hậu, Hà Nội.

[6]. Colomina, I., & Molina, P., (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 92. 79 - 7. doi:https://doi.org/10.1016/j.isprsjprs. 2014. 02.013.

[7]. Cryderman, C., Mah, S. B., & Shufletoski, A., (2014) Evaluation of UAV Photogrammetric Accuracy for Mapping and Earthworks Computations. Geomatica 68(4). 309 - 317. doi:10.5623 /cig 2014 - 405.

[8]. DJI., (2017). Phantom 4 Pro Visionary intelligence and elevated imagination, https://www.dji .com/phantom-4-pro.

[9]. Feng, Q., Liu, J., & Gong, J., (2015). Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier-A Case of Yuyao, China. Water, 7(4), 1437. Retrieved from http://www.mdpi.com/2073-4441/7/4/1437.

[10]. Lê Văn Cảnh, & Nguyễn Quốc Long, (2015). Nâng cao hiệu quả phương pháp Sobolevski trong việc tính trữ lượng khoáng sản. Công nghiệp mỏ 6. 65 - 67.

[11]. Lee, S., & Choi, Y., (2015). On-site demonstration of topographic surveying techniques at open-pit mines using a fixed-wing unmanned aerial vehicle (drone). Tunnel & Underground Space 25. 527.- 533.

[12]. Lee, S., & Choi, Y., (2015). Topographic survey at small-scale open-pit mines using a popular rotary-wing unmanned aerial vehicle (drone). Tunnel & Underground Space 25. 462 - 469.

[13]. Lee, S., & Choi, Y., (2016). Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosystem Engineering 19(4). 197 - 204. doi: 10.1080/12269328.2016.1162115

[14]. Mourato, S., Fernandez, P., Pereira, L., & Moreira, M., (2017). Improving a DSM Obtained by Unmanned Aerial Vehicles for Flood Modelling. Paper presented at the IOP Conf. Series: Earth and Environmental Science.

[15]. Nguyen Quốc Long, C. X. C., (2019). Ứng dụng máy bay không người lái (UAV) để xây dựng mô hình số bề mặt và bản đồ mỏ lộ thiên khai thác vật liệu xây dựng. Tạp chí công nghiệp mỏ 1 - 2019. 9.

[16]. Nguyen Quoc Long, X. N. B., Cao Xuan Cuong, Le Van Canh, (2019). An approach of mapping quarries in Vietnam using low-cost Unmanned Aerial Vehicles. Sustainable Development of Mountain Territories 11(2). 199 - 209.

[17]. Oleire-Oltmanns, S., Marzolff, I., Peter, K., & Ries, J., (2012). Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sens., 4(11). 3390-3416. doi:10.3390/rs4113 390.

[18]. Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P., (2014). Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests 5(6). 1481 - 1507.

[19]. Rokhmana, C. A., (2015). The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia Environmental Sciences 24 (Supplement C). 245 - 253. doi: https://doi.org/10.1016/ j. proenv.2015.03.032.

[20]. Sona, G., Pinto, L., Pagliari, D., Passoni, D., & Gini, R., (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics 7(2). 97 - 107. doi:10.1007 /s12145-013-0142-2.

[21]. Viện tiêu chuẩn quốc gia Việt Nam, (2015). Tiêu chuẩn Việt Nam ngành Trắc Địa Mỏ. Hà Nội.