Assessment of the accuracy of significant wave heights derived from satellite altimetry data in the East Sea

  • Affiliations:

    1 Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Hanoi, Vietnam
    2 Vietnam Institute of Surveying and Mapping, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 28th-June-2025
  • Revised: 5th-Sept-2025
  • Accepted: 15th-Sept-2025
  • Online: 1st-Oct-2025
Pages: 79 - 88
Views: 41
Downloads: 1
Rating: , Total rating: 0
Yours rating

Abstract:

The purpose of this paper is to assess the accuracy of significant wave heights derived from satellite altimetry data in the East Sea. The accuracy assessment method is developed by applying error theory, based on the deviations in significant wave height derived from two different types of satellite altimetry at the same location and time. The spatial and temporal thresholds for considering a pair of points as coincident are 5 kilometers and 60 minutes, respectively. The experiment was conducted in the East Sea using significant wave heights derived from Sentinel-3A satellite altimetry data, collected from March 2, 2016 to August 22, 2024, and Sentinel-3B satellite altimetry data, collected from June 6, 2018 to August 24, 2024. The experimental results show that the accuracy of significant wave height derived from Sentinel-3A and Sentinel-3B satellite altimetry reaches ±0.118 meters. The wave height deviations follow a random distribution. The correlation between significant wave heights obtained from the two satellites is very high (R = 0.97254). In coastal areas and near islands, the deviations tend to be larger. The spatial and temporal thresholds for considering point pairs as coincident were also examined at values of 1, 5, 10 km and 30, 60 minutes, respectively. The results indicate that key evaluation metrics show negligible variation. This study introduces a supplementary approach for evaluating the accuracy of satellite-derived significant wave heights in conditions with limited buoy measurements.

How to Cite
Nguyen, S.Van, Nguyen, H.Thanh Thi and Le, T.Chi 2025. Assessment of the accuracy of significant wave heights derived from satellite altimetry data in the East Sea (in Vietnamese). Journal of Mining and Earth Sciences. 66, 5 (Oct, 2025), 79-88. DOI:https://doi.org/10.46326/JMES.2025.66(5).07.
References

Chelton, D. B., and Schlax, M. G. (2003). The accuracies of satellite altimeter data. Journal of Atmospheric and Oceanic Technology, 20(9), 1360-1376. https://doi.org/10.1175/1520-0426(2003)020.

Chen, C., Zhu, J., Lin, M., Zhao, Y., Wang, H., and Wang, J. (2017). Validation of the significant wave height product of HY-2 altimeter. Remote Sensing, 9(10), 1016. https://doi.org/10.3390 /rs9101016.

Đặng, N. C., Nguyễn, X. B., Bùi, T. H. T., Trần, T. T. T., and Ninh, T. K. A. (2015). Giáo trình lý thuyết sai số. Trường Đại học Tài nguyên và Môi trường, Hà Nội.

Desai, S. D., Haines, B. J., Stowers, D. A., Willis, J. K., and Leben, R. R. (2015). Satellite altimeter calibration using the Harvest Platform. NASA Jet Propulsion Laboratory. JPL Publication 15-1.

ESA. (2025). Copernicus/Sentinel-3. https://www. esa.int/Applications/Observing_the_Earth/ Copernicus/Sentinel-3.

Fu, L. L., and Cazenave, A. (2001). Satellite altimetry and Earth sciences: A handbook of techniques and applications. Academic Press.

Hoàng, N. H., and Trương, Q. H. (2003). Cơ sở toán học xử lý số liệu trắc địa. Nhà xuất bản Giao thông Vận tải.

Korobkin, M., and D’Sa, E. (2007). Significant wave height in the Gulf of Mexico: Validation of Jason-1 measurement against buoy data. Louisiana State University, Coastal Science Institute.

Kudryavtseva, N. A., and Soomere, T. (2016). Validation of the multi-mission altimeter wave height data for the Baltic Sea region. Estonian Journal of Earth Sciences, 65(3), 161-175. https://doi.org/10.3176/earth.2016.13.

Luca, E., Bandoc, G., and Degeratu, M. (2023). Comparative analysis of significant wave height between satellite altimetry data and SWAN model simulations in the Black Sea basin. IOP Conference Series: Earth and Environmental Science, 1185, 012022. https:// doi.org/10.1088/1755-1315/1185/1/0120 22.

McKean, J. W. and Sheather, S. J. (2003). Statistic, Nonparametric. In: Meyers, R.A. (Ed.), Encyclopedia of Physical Science and Technology, Third Edition, p. 891-914. Academic Press, New York.

Nencioli, F., and Quartly, G. D. (2019). Evaluation of Sentinel-3A wave height observations near the coast of southwest England. Remote Sensing, 11, 2998. https://doi.org/10.3390/rs1124 2998.

Nguyễn, N. T., Phạm, T. T. H., and Phạm, V. T. (2018). Đặc điểm sóng gió trên vùng biển Việt Nam theo số liệu reanalysis và quan trắc. Tạp chí Khí tượng Thủy văn, 695, 23-30.

Phạm, K. N., and Nguyễn, B. T. (2021). Một số kết quả ban đầu về ứng dụng số liệu vệ tinh đánh giá độ cao sóng dự báo. Tạp chí Khí tượng Thủy văn, 727, 13-23. https://doi.org/10.36335/VNJHM. 2021(727). 13-23.

Phan, V. H., Đinh, X. V., Phạm, Q. K., and Tạ, T. L. (2017). Lý thuyết sai số và bình sai trắc địa. Nhà xuất bản Xây dựng.

Raney, K. R. (1988). The delay/doppler radar altimeter. IEEE Transactions on Geoscience and Remote Sensing, 36, 1578-1588.

SWAN Team. (2023). SWAN user manual: Cycle III version 41.31. Delft University of Technology.

Trần, T. V. (2015). Biến động khí tượng - hải văn ở Biển Đông trong bối cảnh biến đổi khí hậu. Nhà xuất bản Khoa học Tự nhiên và Công nghệ.

Uti, M. N., Din, A. H. M., and Yaakob, O. (2018). Significant wave height assessment using multi-mission satellite altimeter over Malaysian seas. IOP Conference Series: Earth and Environmental Science, 169(1), 012025. https://doi.org/10.1088/1755-1315/169/1/ 012025.

Yang, J., and Zhang, J. (2019). Validation of Sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data. Sensors, 19, 2914. https://doi.org/10.3390/s19132914.

Young, I. R., and Zieger, S. (2013). Global trends in wind speed and wave height. Science, 332(6028), 451-455.

Other articles