Developing an open source application on estimating potential of soil erosion based cloud computing

  • Affiliations:

    Hanoi University of Mining and Geology, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 16th-May-2025
  • Revised: 21st-Aug-2025
  • Accepted: 8th-Sept-2025
  • Online: 1st-Oct-2025
Pages: 25 - 40
Views: 44
Downloads: 2
Rating: , Total rating: 0
Yours rating

Abstract:

Soil erosion is one of the most serious environmental issues, significantly affecting agricultural practices and productivity, water quality, and ecosystem sustainability. The Universal Soil Loss Equation (USLE) model is a widely used tool for studying soil erosion in a specific area, based on influencing factors such as rainfall, topographic features, soil type, vegetation cover, and human impact through farming practices. However, access to this model has traditionally been limited to researchers or technicians with expertise in data extraction and model processing technologies. With the advancement of information technology and the aim of making the model more accessible to a wider range of users, this study focuses on developing an open-source application to estimate soil erosion based on the USLE model. The application is deployed on the Google Earth Engine (GEE) platform, which enables large-scale and near real-time data processing and analysis without the need for local computing infrastructure. In addition, the application features a single-page interface, allowing users to interact easily without complex operations or page transitions. The computed results are visualized directly on the interface, displaying the spatial distribution of areas at risk of erosion. Users can export the results for further analysis or to generate reports in different formats.

How to Cite
Tran, H.Thi and Tran, N.Thi 2025. Developing an open source application on estimating potential of soil erosion based cloud computing (in Vietnamese). Journal of Mining and Earth Sciences. 66, 5 (Oct, 2025), 25-40. DOI:https://doi.org/10.46326/JMES.2025.66(5).03.
References

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., and Parsian, S. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350.

Angulo-Martínez, M., and Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379(1-2), 111-121.

Ben Cheikha, L., Mabrouk El Asmi, A., Askri, B., Oueslati, M., Gharbi, F., Attia, R., and Aouedi, T. (2025). Soil Erosion Rates Via 210Pbex, 137Cs and USLE Model in El Rmel Watershed, NE  Tunisia. Land degradation and development, 36(6), 2125-2143.

Dang, A. T., Kumar, L., Reid, M., and Mutanga, O. (2021). Fire danger assessment using geospatial modelling in Mekong delta, Vietnam: Effects on wetland resources. Remote Sensing Applications: Society and Environment, 21, 100456.

Desmet, P. J., and Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of soil and water conservation, 51(5), 427-433.

Devine, W. D., and Harrington, C. A. (2007). Influence of harvest residues and vegetation on microsite soil and air temperatures in a young conifer plantation. Agricultural and Forest Meteorology, 145(1-2), 125-138.

Durigon, V., Carvalho, D., Antunes, M., Oliveira, P., and Fernandes, M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International journal of remote sensing, 35(2), 441-453.

Đặng, X. T. (2022). Nghiên cứu ứng dụng công nghệ GIS, Viễn thám và mô hình USLE ttrong đánh giá nguy cơ xói mòn đất tại khu vực Tây Nguyên giai đoạn 2000-2020. Luận văn thạc sĩ kĩ thuật, Trường Đại học Mỏ-Địa Chất.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27.

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., and Bauer-Marschallinger, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), e0169748.

Jain, S. K., Kumar, S., and Varghese, J. (2001). Estimation of soil erosion for a Himalayan watershed using GIS technique. Water resources management, 15, 41-54.

Kinnell, P. (2025). Comparing WEPP with USLE based models: The role of bare fallow runoff and soil loss plots. Soil and Tillage Research, 248, 106413.

Lal, R. (2001). Soil degradation by erosion. Land degradation and development, 12(6), 519-539.

Liu, B., Nearing, M., Shi, P., and Jia, Z. (2000). Slope length effects on soil loss for steep slopes. Soil science society of America journal, 64(5), 1759-1763.

McCool, D. K., Foster, G. R., Mutchler, C., and Meyer, L. (1989). Revised slope length factor for the Universal Soil Loss Equation. Transactions of the ASAE, 32(5), 1571-1576.

Meusburger, K., Konz, N., Schaub, M., and Alewell, C. (2010). Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment. International Journal of Applied Earth Observation and Geoinformation, 12(3), 208-215.

Mondal, A., Khare, D., and Kundu, S. (2018). A comparative study of soil erosion modelling by MMF, USLE and RUSLE. Geocarto International, 33(1), 89-103.

Mutanga, O., and Kumar, L. (2019). Google earth engine applications. In (Vol. 11, pp. 591): MDPI.

Nguyễn, T. H., Nguyễn, T. S., and Thái, P. (1996). Xác định các yếu tố gây xói mòn và khả năng dự báo xói mòn trên đất dốc. Luận án tiến sỹ kỹ thuật trường Đại học Thủy Lợi, Hà Nội.

Nguyễn, T. H., Nguyễn, T. S., and Thái, P. (1998). Xác định các yếu tố gây xói mòn và khả năng dự báo xói mòn trên đất dốc. In Canh tác nông nghiệp bền vững trên đất dốc ở Việt Nam (pp. 149-165). Nhà xuất bản Nông nghiệp Hà Nội.

Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion.

Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., and Alewell, C. (2016). Soil conservation in Europe: wish or reality? Land degradation and development, 27(6), 1547-1551.

Pham Gia, T., Degener, J., and Kappas, M. (2017). Integrated universal soil loss equation (USLE) and geographical information system (GIS) for soil erosion measurement in basin of Asap River, Central Vietnam. EGU General Assembly Conference Abstracts,

Pimentel, D., and Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3(3), 443-463.

Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., and Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS journal of photogrammetry and remote sensing, 164, 152-170.

Tung, P. G., Linh, N. H. K., and Chau, T. T. M. (2025). Ten-Year Changes in Soil Erosion in Nam Dong District, Central Vietnam Using USLE and GIS Techniques. International Journal of Environmental Sciences, 11(5s), 539-545.

Trần, C. M. (2021). Nghiên cứu đề xuất áp dụng phương trình mất đất phổ dụng (USLE) trong dự báo xói mòn do hoạt động sản xuất nông nghiệp vùng núi phía Bắc Việt Nam.

Van der Knijff, J., Jones, R., and Montanarella, L. (1999). Soil erosion risk assessment in Italy. Citeseer.

Vũ, T. T., Nguyễn, T. V., and Pham, L.T. H. (2019). Ứng dụng phương trình USLE và GIS xây dựng bản đồ xói mòn đất khu vực Tây Nguyên. Khoa học Kỹ Thuật Thủy Lợi và Môi Trường, 66, 100-107.

Wischmeier, W. H., and Smith, D. D (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation. Agricultural Research Service, US Department of Agriculture.

Wischmeier, W. H., and Mannering, J. (1969). Relation of soil properties to its erodibility. Soil science society of America journal, 33(1), 131-137.

Wischmeier, W. H., and Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture, Science and Education Administration.

Other articles