Evaluating the accuracy of pressure measurements on the surface of shock waves propagating in an underwater environment of experimental explosion

  • Affiliations:

    1 Weapons Institute, Hanoi, Vietnam
    2 Le Quy Don Technical University, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 28th-Mar-2024
  • Revised: 24th-July-2024
  • Accepted: 20th-Aug-2024
  • Online: 1st-Oct-2024
Pages: 31 - 40
Views: 227
Downloads: 8
Rating: , Total rating: 0
Yours rating

Abstract:

Currently, the calculation of pressure on the surface of shock waves propagating in underwater environments is based on research findings inherited from Russia and the United States corresponding to standard conditions. To inherit and conduct experimental research on underwater explosions under different conditions in our context, it is necessary to study the selection and propose appropriate experimental model parameters, including the amount of explosive material, the depth of charge placement, and the water depth. Based on the analysis of theoretical explosive hydrodynamics in the water environment, this paper introduced the results of an experimental model, calculated and determined the boundary condition parameters of the experimental model, and conducted underwater explosion experiments. Using the explosion similarity method to represent relative pressure as a function of relative distance and the least squares method on Excel tool to establish experimental laws for the distribution of maximum pressure on the shock wave surface by distance. The obtained results reveal a decreasing law of maximum pressure on the shock wave surface with an exponent coefficient consistent with the research findings in Russia and the United States but with a deviation in amplitude oscillation matching of -7.6% and -5.9%. The research results confirm that the proposed experimental model can be applied to perform experimental research for different purposes while still ensuring the necessary accuracy.

How to Cite
Tran, V.Duc and Dam, T.Trong 2024. Evaluating the accuracy of pressure measurements on the surface of shock waves propagating in an underwater environment of experimental explosion. Journal of Mining and Earth Sciences. 65, 5 (Oct, 2024), 31-40. DOI:https://doi.org/10.46326/JMES.2024.65(5).04.
References

Baum, Ph. A. and Orlenko, L. P. (2002). Physics of explosion - Volume 1. Moscow.

Bernard, L. M. and Shen, W. (1996). Water Waves Generated by Underwater Explosions. Defense Nuclear Agency Alexandria.

Borodzia, G. A. (1938). Explosive dredging of sandy rifts. Gostranstekhizdat, Moscow, 67p.

Chadwick, P., Cox, A. and Hopkins, G. (1966). Mechanics of deep underground explosions. "Mir", Moscow.

Cole, R. H. (1948). Underwater explosions. Princeton University Press.

Ma, L. D. and Chu, C. T. (1971). Design and execution of explosions with large masses. Beijing.

Galkin, V. V., Gilmanov, R. A. and Drogoveyko, I. Z. (1987). Blasting underwater. “Nedra” Moscow.

Hồ, S. G., Đàm, T. T., Lê, V. Q. and Hoàng, T. C. (2010). Nổ hóa học lý thuyết và thực tiễn. NXB Khoa học và kỹ thuật, Hà Nội, 663 trang. 

Gorodilov, L. V. (1993). Study of the mechanical effect of the explosion of underwater overhead charges in soils and rocks. Novosibirisk.

Nguyễn, X. K. and Đàm, T. T. (2007). Xác định chỉ tiêu thuốc nổ khi nổ mìn phá tơi đá dưới nước bằng lượng nổ đặt trong môi trường đất đá. Tạp chí Nghiên cứu KHKT-CN quân sự, số 21/2007.

Kytuzov, B. N. (1983), Handbook of explosives. “Hedra” Moscow.

Kutuzov, B. N. (1990). Design of blasting operations in industry. “Nedra” Moscow.

Kutuzov, B. N. (1990). Laboratory work in the discipline “Destruction of rocks by explosion”. MGI, Moscow. 

Kutuzov, B. N. and Belin, V. A. (2012). Design and organization of blasting operations. Mining Book.

Vu, T. L., Dam, T. T. and Tran, D. V. (2023). Denoising the shockwave pressure signal of underwater explosion based on EMD-CEEMDAN in consideration of the signal curve curvature. Journal of Science and Technique - Section on Special Construction Engineering. Ha Noi, 02. https://doi.org/10.56651/lqdtu.jst.v6.n02.745.sce.

Tavrivov, V. M. (1949). Blasting dredging. Publishing house of the Ministry of River Fleet of the USSR, Moscow.

Đàm, T. T., Bùi, X. N. and Trần, Q. H. (2015). Nổ mìn trong ngành mỏ và công trình. NXB Khoa học tự nhiên và công nghệ, Hà Nội.

Đàm, T. T. and Trần, Đ. V. (2021). Nghiên cứu ảnh hưởng của màn chắn bóng khí đến trường sóng nổ lan truyền trong môi trường nước. Tạp chí khoa học kỹ thuật Mỏ - Địa chất, 62(5), Hà Nội. https://doi.org/ 10.46326/JMES.2021.62 (5).09.

Đàm, T. T., Nguyễn, H. H. and Phan, T. T. (2023). Công tác nổ - Lý thuyết cơ bản về nổ. NXB Quân đội nhân dân.

Tô, Đ. T. (2015). Nghiên cứu sự lan truyền của sóng nổ trong nước và tương tác của sóng nổ đối với chướng ngại công trình. Luận án Tiến sĩ kỹ thuật, Học viện Kỹ thuật Quân sự, Hà Nội.

Sedov, L. I. (1954). Methods of similarity and dimension in mechanics. Publishing house GITL.

Vlasov, O. E. (1957). Basics of explosion action. VIA, Moscow.

Xalamakhin, T. M. (1967). A manual for solving problems on the theory of the mechanical action of an explosion. VIA Moscow Publishing House.

Zamyshlyaev, B. V. and Yakovlev, Yu. S. (1967), Dynamic Loads During an Underwater Explosion. Leningrad.

Other articles