Quantifying the influence of local climate zones on diurnal and nocturnal land surface temperature variations: a case study in Ho Chi Minh City

  • Affiliations:

    1 Department of Geography and Remote Sensing, Institute of Life Sciences, Vietnam Academy of Science and Technology, Hochiminh, Vietnam
    2 Hanoi University of Mining and Geology, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 9th-Jan-2025
  • Revised: 14th-Apr-2025
  • Accepted: 29th-Apr-2025
  • Online: 1st-June-2025
Pages: 1 - 13
Views: 43
Downloads: 0
Rating: , Total rating: 0
Yours rating

Abstract:

Earth observation satellite missions are providing an unprecedented source of land surface temperature with diverse spatial and temporal resolutions over decades, facilitating the accurate modeling and interpretation of environmental interactions across spatiotemporal scales. This study represents a pioneering effort to quantify the intricate interplay between diurnal/nocturnal land surface temperature products and local climate zones within Vietnam, utilizing Ho Chi Minh City as a case study. The Google Earth Engine cloud computing platform was utilized to access and process diurnal and nocturnal land surface temperature data from Moderate Resolution Imaging Spectroradiometer (MODIS). Focusing on the hottest period from 2022 - 2024, we elucidate typical monthly land surface temperature, identifying the hottest and coolest months, accompanied by maximum and minimum land surface temperature following consistent spatial patterns. By applying harmonic regression models to daily time series data for each local climate zone, our results pronounced seasonal cycles, alongside a noticeable trend of escalating nighttime land surface temperature, ranging from 1.5÷20C, over the three-year examined period. Furthermore, maximum daytime and nighttime land surface temperatures were recorded in areas characterized by narrow landscapes, while exhibiting diminishing with increasing open architecture or lower building densities, along with the significant role in temperature-regulating by the Can Gio mangrove forest situated in the southeastern. These findings contribute significantly to a nuanced understanding of urban climate dynamics and the intricate interaction between land surface temperature variations and urban architecture.

How to Cite
Nguyen, H.Cao, Nguyen, B.An, Le, H.Thu Thi, Ho, M.Nhut, Nguyen, T.Phuong Thi and Nguyen, A.Ngoc 2025. Quantifying the influence of local climate zones on diurnal and nocturnal land surface temperature variations: a case study in Ho Chi Minh City (in Vietnamese). Journal of Mining and Earth Sciences. 66, 3 (Jun, 2025), 1-13. DOI:https://doi.org/10.46326/JMES.2025.66(3).01.
References

Aslam, A., and Rana, I. A. (2022). The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. In Urban Climate (Vol. 42). https://doi.org/10.1016/j.uclim. 2022.101120.

Bechtel, B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C., and Voogt, J. (2019). SUHI analysis using Local Climate Zones-A comparison of 50 cities. Urban Climate, 28. https://doi.org/10.1016/j.uclim.2019.01.005.

Chen, X., Su, Z., Ma, Y., Cleverly, J., and Liddell, M. (2017). An accurate estimate of monthly mean land surface temperatures from MODIS clear-sky retrievals. Journal of Hydrometeorology, 18(10). https://doi. org/10.1175/JHM-D-17-0009.1.

Crosson, W. L., Al-Hamdan, M. Z., Hemmings, S. N. J., and Wade, G. M. (2012). A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States. Remote Sensing of Environment, 119. https://doi.org/10. 1016/j.rse.2011.12.019.

Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., Van Vliet, J., and Bechtel, B. (2022). A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data, 14(8). https://doi.org/10.5194/essd-14-3835-2022.

Desai, A. R., Khan, A. M., Zheng, T., Paleri, S., Butterworth, B., Lee, T. R., Fisher, J. B., Hulley, G., Kleynhans, T., Gerace, A., Townsend, P. A., Stoy, P., and Metzger, S. (2021). Multi-Sensor Approach for High Space and Time Resolution Land Surface Temperature. Earth and Space Science, 8(10). https://doi.org/10.1029/2021EA 001842.

He, B. J., Wang, J., Liu, H., and Ulpiani, G. (2021). Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environmental Research, 193. https://doi.org/10.1016/j.envres. 2020.110584.

Heusinkveld, B. G., Steeneveld, G. J., Van Hove, L. W. A., Jacobs, C. M. J., and Holtslag, A. A. M. (2014). Spatial variability of the rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research, 119(2). https://doi.org/10.1002/2012JD019399

Ho, T. M. D., Le, V. T. and Tran, T. V. (2007). Surface Emissivity in Determining Land Surface Temperature. International Journal of Geoinformatics.

Hoa, P. V., Binh, N. A., Thao, G. T. P., An, N. N., Trinh, P. T., Tuan, N. Q., and Hanh, N. C. (2025). Long-Term Trend and Seasonal Cycles of Gap-Free Downscaled Diurnal/Nocturnal LST and the Interaction to Functional Plant Trait Under Tropical Monsoon Climate. Earth and Space Science, 12(2), e2024EA003888. https://doi.org/ 10.1029/2024EA003888.

Huang, F., Jiang, S., Zhan, W., Bechtel, B., Liu, Z., Demuzere, M., Huang, Y., Xu, Y., Ma, L., Xia, W., Quan, J., Jiang, L., Lai, J., Wang, C., Kong, F., Du, H., Miao, S., Chen, Y., and Chen, J. (2023). Mapping local climate zones for cities: A large review. In Remote Sensing of Environment (Vol. 292). https://doi.org/ 10.1016/j.rse.2023.113573.

Jakubauskas, M. E., and Legates, D. R. (2000). Harmonic analysis of time-series AVHRR NDVI data for characterizing US Great Plains land use/land cover. International Archives of Photogrammetry and Remote Sensing, 33(B4).

Karen Fox, Aries Keck, and Jacob Richmond. (2023). NASA Announces Summer 2023 Hottest on Record. https://www.nasa. gov/news-release/nasa-announces-summer-2023-hottest-on-record/.

Lê, T. T. H., Đoàn, D. N.,  Huỳnh, T. L., Nguyễn, T. T. T., Nguyễn, T. N. H., Lưu, T. T. T., Võ, T. C. C., và Lê, T. N. (2020). Đánh giá vai trò của cơ cấu lớp phủ bề mặt đô thị trong việc giảm hiệu ứng đảo nhiệt đô thị bằng công nghệ viễn thám và GIS. Tạp chí Khoa học kỹ thuật Mỏ - Địa chất, số 61(2), 76-85. https://doi.org/10.46326/JMES.2020.61(2).09.

Lê, H. T. T., Nguyễn, T. V., Nguyễn, K. N., Nguyễn, P. D., Võ, T. T., Nguyễn, T. G., Phạm, T. V., and Lê, D. V. (2021). Nghiên cứu mối quan hệ giữa đảo nhiệt đô thị và mật độ dân số các quận, huyện ở Thành phố Hồ Chí Minh bằng dữ liệu ảnh Sentinel - 3 SLSTR. Tạp chí Khoa học kỹ thuật Mỏ - Địa chất. 62(5), 67-75.https://doi.org/10.46326/JMES. 2021.62(5).06.

Lê, V. T. and Nguyễn, T. M. (2006). Mapping Land Surface Temperature (LST) from Satellite Imageries. Case Study in HoChiMinh City. GIS-IDEAS.

Lê, V. T. and Nguyễn, T. M. (2007). Trích lọc giá trị nhiệt bề mặt (LST) từ ảnh vệ tinh Landsat 7 ETM+. Đặc San “Viễn Thám và Đại Tin Học” Số 3 Trung tâm Viễn thám - Bộ Tài nguyên Môi trường.

Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. In Remote Sensing of Environment (Vol. 131). https://doi.org/ 10.1016/j.rse.2012.12.008.

Liu, X., Li, Z. L., Li, J. H., Leng, P., Liu, M., and Gao, M. (2023). Temporal Upscaling of MODIS 1-km Instantaneous Land Surface Temperature to Monthly Mean Value: Method Evaluation and Product Generation. IEEE Transactions on Geoscience and Remote Sensing, 61. https://doi.org/10.1109/TGRS.2023.3247428.

Neinavaz, E., Schlerf, M., Darvishzadeh, R., Gerhards, M., and Skidmore, A. K. (2021). Thermal infrared remote sensing of vegetation: Current status and perspectives. In International Journal of Applied Earth Observation and Geoinformation (Vol. 102). https://doi. org/10.1016/j.jag.2021.102415.

Pu, R., and Bonafoni, S. (2023). Thermal infrared remote sensing data downscaling investigations: An overview on current status and perspectives. In Remote Sensing Applications: Society and Environment (Vol. 29). https://doi.org/10.1016/j.rsase. 2023.100921.

Qi, P., Cui, Y., Zhang, H., Hu, S., Yao, L., and Bailian Li, L. (2020). Evaluating multivariable statistical methods for downscaling nighttime land surface temperature in urban areas. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3021034.

Stewart, I. D., and Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12). https://doi.org/10.1175/ BAMS-D-11-00019.1.

Sun, D., and Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of

temperature-related drought indices over North America. Geophysical Research Letters, 34(24). https://doi.org/10.1029/ 2007GL031485.

Tollefson, J. (2023). Earth’s hottest month: these charts show what happened in July and what comes next. In Nature (Vol. 620, Issue 7975). https://doi.org/10.1038/ d41586-023-02552-2.

Tran, H. and Yasuoka Y. (2002a). Monitoring Urban Surface from Space: Case Study of Hochiminh City and Surrounding Region. GIS-IDEAS.

Tran, H. and Yasuoka Y. (2002b). Remote Sensing to Analyze The Changes of Surface Biophysical Parameters in Vietnam’s Urbanized Area. ACRS.

Trịnh, H. L., Vũ, T. D., and Vương, K. T. (2017). Xây dựng quy trı̀nh bán tự động chiế́t tách thông tin nhiệt độ̣ bề mặt từ ảnh viễn thám hồng ngoại nhiệ̣t Landsat sử dụng phần mềm Erdas Imagine. Tạp chí Khoa học kỹ thuật Mỏ - Địa chất. 58(4), 27-33.

Wang, K., Aktas, Y. D., Stocker, J., Carruthers, D., Hunt, J., and Malki-Epshtein, L. (2019). Urban heat island modelling of a tropical city: Case of kuala lumpur. Geoscience Letters, 6(1). https://doi.org/10.1186/s40562-019-0134-2.

Wicki, A., Parlow, E., and Feigenwinter, C. (2018). Evaluation and modeling of urban heat island intensity in Basel, Switzerland. Climate, 6(3). https://doi.org/10.3390/ cli6030055.

Yoo, C., Im, J., Cho, D., Lee, Y., Bae, D., and Sismanidis, P. (2022). Downscaling MODIS nighttime land surface temperatures in urban areas using ASTER thermal data through local linear forest. International Journal of Applied Earth Observation and Geoinformation, 110. https://doi.org/10. 1016/j.jag.2022.102827.

Yu, L., Liu, Y., Li, X., Yan, F., Lyne, V., and Liu, T. (2023). Vegetation-induced asymmetric diurnal land surface temperatures changes across global climate zones. Science of the Total Environment, 896. https://doi. org/10.1016/j.scitotenv.2023.165255.

Zhou, J., Jia, L., and Menenti, M. (2015). Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sensing of Environment, 163. https://doi.org/10. 1016/j.rse.2015.03.018.

Zhou, Q., Zhu, Z., Xian, G., and Li, C. (2022). A novel regression method for harmonic analysis of time series. ISPRS Journal of Photogrammetry and Remote Sensing, 185. https://doi.org/10.1016/j.isprsjprs.2022.01.006.

Other articles